# -*- coding: utf-8 -*-
"""TQDM logger."""
from collections import OrderedDict
from typing import Any, Callable, List, Optional, Union
from ignite.contrib.handlers.base_logger import BaseLogger, BaseOutputHandler
from ignite.engine import Engine, Events
from ignite.engine.events import CallableEventWithFilter, RemovableEventHandle
[docs]class ProgressBar(BaseLogger):
"""
TQDM progress bar handler to log training progress and computed metrics.
Args:
persist: set to ``True`` to persist the progress bar after completion (default = ``False``)
bar_format : Specify a custom bar string formatting. May impact performance.
[default: '{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]'].
Set to ``None`` to use ``tqdm`` default bar formatting: '{l_bar}{bar}{r_bar}', where
l_bar='{desc}: {percentage:3.0f}%|' and
r_bar='| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'. For more details on the
formatting, see `tqdm docs <https://tqdm.github.io/docs/tqdm/>`_.
tqdm_kwargs: kwargs passed to tqdm progress bar.
By default, progress bar description displays "Epoch [5/10]" where 5 is the current epoch and 10 is the
number of epochs; however, if ``max_epochs`` are set to 1, the progress bar instead displays
"Iteration: [5/10]". If tqdm_kwargs defines `desc`, e.g. "Predictions", than the description is
"Predictions [5/10]" if number of epochs is more than one otherwise it is simply "Predictions".
Examples:
Simple progress bar
.. code-block:: python
trainer = create_supervised_trainer(model, optimizer, loss)
pbar = ProgressBar()
pbar.attach(trainer)
# Progress bar will looks like
# Epoch [2/50]: [64/128] 50%|█████ [06:17<12:34]
Log output to a file instead of stderr (tqdm's default output)
.. code-block:: python
trainer = create_supervised_trainer(model, optimizer, loss)
log_file = open("output.log", "w")
pbar = ProgressBar(file=log_file)
pbar.attach(trainer)
Attach metrics that already have been computed at :attr:`~ignite.engine.events.Events.ITERATION_COMPLETED`
(such as :class:`~ignite.metrics.RunningAverage`)
.. code-block:: python
trainer = create_supervised_trainer(model, optimizer, loss)
RunningAverage(output_transform=lambda x: x).attach(trainer, 'loss')
pbar = ProgressBar()
pbar.attach(trainer, ['loss'])
# Progress bar will looks like
# Epoch [2/50]: [64/128] 50%|█████ , loss=0.123 [06:17<12:34]
Directly attach the engine's output
.. code-block:: python
trainer = create_supervised_trainer(model, optimizer, loss)
pbar = ProgressBar()
pbar.attach(trainer, output_transform=lambda x: {'loss': x})
# Progress bar will looks like
# Epoch [2/50]: [64/128] 50%|█████ , loss=0.123 [06:17<12:34]
Example where the State Attributes ``trainer.state.alpha`` and ``trainer.state.beta``
are also logged along with the NLL and Accuracy after each iteration:
.. code-block:: python
pbar.attach(
trainer,
metric_names=["nll", "accuracy"],
state_attributes=["alpha", "beta"],
)
Note:
When adding attaching the progress bar to an engine, it is recommend that you replace
every print operation in the engine's handlers triggered every iteration with
``pbar.log_message`` to guarantee the correct format of the stdout.
Note:
When using inside jupyter notebook, `ProgressBar` automatically uses `tqdm_notebook`. For correct rendering,
please install `ipywidgets <https://ipywidgets.readthedocs.io/en/stable/user_install.html#installation>`_.
Due to `tqdm notebook bugs <https://github.com/tqdm/tqdm/issues/594>`_, bar format may be needed to be set
to an empty string value.
.. versionchanged:: 0.4.7
`attach` now accepts an optional list of `state_attributes`
"""
_events_order = [
Events.STARTED,
Events.EPOCH_STARTED,
Events.ITERATION_STARTED,
Events.ITERATION_COMPLETED,
Events.EPOCH_COMPLETED,
Events.COMPLETED,
] # type: List[Union[Events, CallableEventWithFilter]]
def __init__(
self,
persist: bool = False,
bar_format: Union[
str, None
] = "{desc}[{n_fmt}/{total_fmt}] {percentage:3.0f}%|{bar}{postfix} [{elapsed}<{remaining}]",
**tqdm_kwargs: Any,
):
try:
from tqdm.autonotebook import tqdm
except ImportError:
raise RuntimeError(
"This contrib module requires tqdm to be installed. "
"Please install it with command: \n pip install tqdm"
)
self.pbar_cls = tqdm
self.pbar = None
self.persist = persist
self.bar_format = bar_format
self.tqdm_kwargs = tqdm_kwargs
def _reset(self, pbar_total: Optional[int]) -> None:
self.pbar = self.pbar_cls(
total=pbar_total, leave=self.persist, bar_format=self.bar_format, initial=1, **self.tqdm_kwargs
)
def _close(self, engine: Engine) -> None:
if self.pbar is not None:
# https://github.com/tqdm/notebook.py#L240-L250
# issue #1115 : notebook backend of tqdm checks if n < total (error or KeyboardInterrupt)
# and the bar persists in 'danger' mode
if self.pbar.total is not None:
self.pbar.n = self.pbar.total
self.pbar.close()
self.pbar = None
@staticmethod
def _compare_lt(
event1: Union[Events, CallableEventWithFilter], event2: Union[Events, CallableEventWithFilter]
) -> bool:
i1 = ProgressBar._events_order.index(event1)
i2 = ProgressBar._events_order.index(event2)
return i1 < i2
[docs] def log_message(self, message: str) -> None:
"""
Logs a message, preserving the progress bar correct output format.
Args:
message: string you wish to log.
"""
from tqdm import tqdm
tqdm.write(message, file=self.tqdm_kwargs.get("file", None))
[docs] def attach( # type: ignore[override]
self,
engine: Engine,
metric_names: Optional[Union[str, List[str]]] = None,
output_transform: Optional[Callable] = None,
event_name: Union[Events, CallableEventWithFilter] = Events.ITERATION_COMPLETED,
closing_event_name: Union[Events, CallableEventWithFilter] = Events.EPOCH_COMPLETED,
state_attributes: Optional[List[str]] = None,
) -> None:
"""
Attaches the progress bar to an engine object.
Args:
engine: engine object.
metric_names: list of metric names to plot or a string "all" to plot all available
metrics.
output_transform: a function to select what you want to print from the engine's
output. This function may return either a dictionary with entries in the format of ``{name: value}``,
or a single scalar, which will be displayed with the default name `output`.
event_name: event's name on which the progress bar advances. Valid events are from
:class:`~ignite.engine.events.Events`.
closing_event_name: event's name on which the progress bar is closed. Valid events are from
:class:`~ignite.engine.events.Events`.
state_attributes: list of attributes of the ``trainer.state`` to plot.
Note:
Accepted output value types are numbers, 0d and 1d torch tensors and strings.
"""
desc = self.tqdm_kwargs.get("desc", None)
if event_name not in engine._allowed_events:
raise ValueError(f"Logging event {event_name.name} is not in allowed events for this engine")
if isinstance(closing_event_name, CallableEventWithFilter):
if closing_event_name.filter is not None:
raise ValueError("Closing Event should not be a filtered event")
if not self._compare_lt(event_name, closing_event_name):
raise ValueError(f"Logging event {event_name} should be called before closing event {closing_event_name}")
log_handler = _OutputHandler(
desc,
metric_names,
output_transform,
closing_event_name=closing_event_name,
state_attributes=state_attributes,
)
super(ProgressBar, self).attach(engine, log_handler, event_name)
engine.add_event_handler(closing_event_name, self._close)
[docs] def attach_opt_params_handler(
self, engine: Engine, event_name: Union[str, Events], *args: Any, **kwargs: Any
) -> RemovableEventHandle:
"""Intentionally empty"""
pass
def _create_output_handler(self, *args: Any, **kwargs: Any) -> "_OutputHandler":
return _OutputHandler(*args, **kwargs)
def _create_opt_params_handler(self, *args: Any, **kwargs: Any) -> Callable:
"""Intentionally empty"""
pass
class _OutputHandler(BaseOutputHandler):
"""Helper handler to log engine's output and/or metrics
pbar = ProgressBar()
Args:
description: progress bar description.
metric_names: list of metric names to plot or a string "all" to plot all available
metrics.
output_transform: output transform function to prepare `engine.state.output` as a number.
For example, `output_transform = lambda output: output`
This function can also return a dictionary, e.g `{'loss': loss1, 'another_loss': loss2}` to label the plot
with corresponding keys.
closing_event_name: event's name on which the progress bar is closed. Valid events are from
:class:`~ignite.engine.events.Events` or any `event_name` added by
:meth:`~ignite.engine.engine.Engine.register_events`.
state_attributes: list of attributes of the ``trainer.state`` to plot.
"""
def __init__(
self,
description: str,
metric_names: Optional[Union[str, List[str]]] = None,
output_transform: Optional[Callable] = None,
closing_event_name: Union[Events, CallableEventWithFilter] = Events.EPOCH_COMPLETED,
state_attributes: Optional[List[str]] = None,
):
if metric_names is None and output_transform is None:
# This helps to avoid 'Either metric_names or output_transform should be defined' of BaseOutputHandler
metric_names = []
super(_OutputHandler, self).__init__(
description, metric_names, output_transform, global_step_transform=None, state_attributes=state_attributes
)
self.closing_event_name = closing_event_name
@staticmethod
def get_max_number_events(event_name: Union[str, Events, CallableEventWithFilter], engine: Engine) -> Optional[int]:
if event_name in (Events.ITERATION_STARTED, Events.ITERATION_COMPLETED):
return engine.state.epoch_length
if event_name in (Events.EPOCH_STARTED, Events.EPOCH_COMPLETED):
return engine.state.max_epochs
return 1
def __call__(self, engine: Engine, logger: ProgressBar, event_name: Union[str, Events]) -> None:
pbar_total = self.get_max_number_events(event_name, engine)
if logger.pbar is None:
logger._reset(pbar_total=pbar_total)
max_epochs = engine.state.max_epochs
default_desc = "Iteration" if max_epochs == 1 else "Epoch"
desc = self.tag or default_desc
max_num_of_closing_events = self.get_max_number_events(self.closing_event_name, engine)
if max_num_of_closing_events and max_num_of_closing_events > 1:
global_step = engine.state.get_event_attrib_value(self.closing_event_name)
desc += f" [{global_step}/{max_num_of_closing_events}]"
logger.pbar.set_description(desc) # type: ignore[attr-defined]
rendered_metrics = self._setup_output_metrics_state_attrs(engine, log_text=True)
metrics = OrderedDict()
for key, value in rendered_metrics.items():
key = "_".join(key[1:]) # tqdm has tag as description
metrics[key] = value
if metrics:
logger.pbar.set_postfix(metrics) # type: ignore[attr-defined]
global_step = engine.state.get_event_attrib_value(event_name)
if pbar_total is not None:
global_step = (global_step - 1) % pbar_total + 1
logger.pbar.update(global_step - logger.pbar.n) # type: ignore[attr-defined]