Shortcuts

Source code for ignite.contrib.metrics.roc_auc

from ignite.metrics import EpochMetric


def roc_auc_compute_fn(y_preds, y_targets):
    try:
        from sklearn.metrics import roc_auc_score
    except ImportError:
        raise RuntimeError("This contrib module requires sklearn to be installed.")

    y_true = y_targets.numpy()
    y_pred = y_preds.numpy()
    return roc_auc_score(y_true, y_pred)


def roc_auc_curve_compute_fn(y_preds, y_targets):
    try:
        from sklearn.metrics import roc_curve
    except ImportError:
        raise RuntimeError("This contrib module requires sklearn to be installed.")

    y_true = y_targets.numpy()
    y_pred = y_preds.numpy()
    return roc_curve(y_true, y_pred)


[docs]class ROC_AUC(EpochMetric): """Computes Area Under the Receiver Operating Characteristic Curve (ROC AUC) accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.roc_auc_score <http://scikit-learn.org/stable/modules/generated/ sklearn.metrics.roc_auc_score.html#sklearn.metrics.roc_auc_score>`_ . Args: output_transform (callable, optional): a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn (bool): Optional default False. If True, `roc_curve <http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html# sklearn.metrics.roc_auc_score>`_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. ROC_AUC expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def activated_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y roc_auc = ROC_AUC(activated_output_transform) """ def __init__(self, output_transform=lambda x: x, check_compute_fn: bool = False): super(ROC_AUC, self).__init__( roc_auc_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn )
[docs]class RocCurve(EpochMetric): """Compute Receiver operating characteristic (ROC) for binary classification task by accumulating predictions and the ground-truth during an epoch and applying `sklearn.metrics.roc_curve <http://scikit-learn.org/stable/modules/generated/ sklearn.metrics.roc_curve.html#sklearn.metrics.roc_curve>`_ . Args: output_transform (callable, optional): a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. check_compute_fn (bool): Optional default False. If True, `sklearn.metrics.roc_curve <http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html# sklearn.metrics.roc_curve>`_ is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function. RocCurve expects y to be comprised of 0's and 1's. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below: .. code-block:: python def activated_output_transform(output): y_pred, y = output y_pred = torch.sigmoid(y_pred) return y_pred, y roc_auc = RocCurve(activated_output_transform) """ def __init__(self, output_transform=lambda x: x, check_compute_fn: bool = False): super(RocCurve, self).__init__( roc_auc_curve_compute_fn, output_transform=output_transform, check_compute_fn=check_compute_fn )

© Copyright 2022, PyTorch-Ignite Contributors. Last updated on 05/04/2022, 8:31:53 PM.

Built with Sphinx using a theme provided by Read the Docs.