• Docs >
  • Module code >
  • ignite.contrib.metrics.regression.geometric_mean_absolute_error
Shortcuts

Source code for ignite.contrib.metrics.regression.geometric_mean_absolute_error

import torch

from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.exceptions import NotComputableError


[docs]class GeometricMeanAbsoluteError(_BaseRegression): r""" Calculates the Geometric Mean Absolute Error. :math:`\text{GMAE} = \exp(\frac{1}{n}\sum_{j=1}^n\ln(|A_j - P_j|))` where, :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 """ def reset(self): self._sum_of_errors = 0.0 self._num_examples = 0 def _update(self, output): y_pred, y = output errors = torch.log(torch.abs(y.view_as(y_pred) - y_pred)) self._sum_of_errors += torch.sum(errors) self._num_examples += y.shape[0] def compute(self): if self._num_examples == 0: raise NotComputableError( "GeometricMeanAbsoluteError must have at " "least one example before it can be computed." ) return torch.exp(self._sum_of_errors / self._num_examples).item()

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 11/07/2024, 2:11:37 PM.

Built with Sphinx using a theme provided by Read the Docs.