AveragePrecision#
- class ignite.metrics.AveragePrecision(output_transform=<function AveragePrecision.<lambda>>, check_compute_fn=False, device=device(type='cpu'), skip_unrolling=False)[source]#
Computes Average Precision accumulating predictions and the ground-truth during an epoch and applying sklearn.metrics.average_precision_score .
- Parameters
output_transform (Callable) – a callable that is used to transform the
Engine
’sprocess_function
’s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs.check_compute_fn (bool) – Default False. If True, average_precision_score is run on the first batch of data to ensure there are no issues. User will be warned in case there are any issues computing the function.
device (Union[str, device]) – optional device specification for internal storage.
skip_unrolling (bool) – specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if
y_pred
contains multi-ouput as(y_pred_a, y_pred_b)
Alternatively,output_transform
can be used to handle this.
Note
AveragePrecision expects y to be comprised of 0’s and 1’s. y_pred must either be probability estimates or confidence values. To apply an activation to y_pred, use output_transform as shown below:
def activated_output_transform(output): y_pred, y = output y_pred = torch.softmax(y_pred, dim=1) return y_pred, y avg_precision = AveragePrecision(activated_output_transform)
Examples
from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.clustering import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
y_pred = torch.tensor([[0.79, 0.21], [0.30, 0.70], [0.46, 0.54], [0.16, 0.84]]) y_true = torch.tensor([[1, 1], [1, 1], [0, 1], [0, 1]]) avg_precision = AveragePrecision() avg_precision.attach(default_evaluator, 'average_precision') state = default_evaluator.run([[y_pred, y_true]]) print(state.metrics['average_precision'])
0.9166...
Changed in version 0.5.1:
skip_unrolling
argument is added.Methods