LRScheduler#
- class ignite.handlers.param_scheduler.LRScheduler(lr_scheduler, save_history=False, use_legacy=False)[source]#
A wrapper class to call torch.optim.lr_scheduler objects as ignite handlers.
- Parameters
lr_scheduler (LRScheduler) – lr_scheduler object to wrap.
save_history (bool) – whether to log the parameter values to engine.state.param_history, (default=False).
use_legacy (bool) – if True, scheduler should be attached to
Events.ITERATION_COMPLETED
, (default=False).
Examples
from collections import OrderedDict import torch from torch import nn, optim from ignite.engine import * from ignite.handlers import * from ignite.metrics import * from ignite.metrics.clustering import * from ignite.metrics.regression import * from ignite.utils import * # create default evaluator for doctests def eval_step(engine, batch): return batch default_evaluator = Engine(eval_step) # create default optimizer for doctests param_tensor = torch.zeros([1], requires_grad=True) default_optimizer = torch.optim.SGD([param_tensor], lr=0.1) # create default trainer for doctests # as handlers could be attached to the trainer, # each test must define his own trainer using `.. testsetup:` def get_default_trainer(): def train_step(engine, batch): return batch return Engine(train_step) # create default model for doctests default_model = nn.Sequential(OrderedDict([ ('base', nn.Linear(4, 2)), ('fc', nn.Linear(2, 1)) ])) manual_seed(666)
default_trainer = get_default_trainer() from torch.optim.lr_scheduler import StepLR torch_lr_scheduler = StepLR(default_optimizer, step_size=3, gamma=0.1) scheduler = LRScheduler(torch_lr_scheduler) default_trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) @default_trainer.on(Events.ITERATION_COMPLETED) def print_lr(): print(default_optimizer.param_groups[0]["lr"]) default_trainer.run([0] * 8, max_epochs=1)
0.1 0.1 0.1 0.010... 0.010... 0.010... 0.001... 0.001...
New in version 0.4.5.
Changed in version 0.4.9: added use_legacy argument
Methods
Method to get current optimizer's parameter value
Method to simulate scheduled values during num_events events.