fbresearch_logger#
FBResearch logger and its helper handlers.
Classes
Logs training and validation metrics for research purposes. |
- class ignite.handlers.fbresearch_logger.FBResearchLogger(logger, delimiter=' ', show_output=False)[source]#
Logs training and validation metrics for research purposes.
This logger is designed to attach to an Ignite Engine and log various metrics and system stats at configurable intervals, including learning rates, iteration times, and GPU memory usage.
- Parameters
Examples
import logging import torch import torch.nn as nn import torch.optim as optim from ignite.engine import create_supervised_trainer, Events from ignite.handlers.fbresearch_logger import FBResearchLogger from ignite.utils import setup_logger model = nn.Linear(10, 5) opt = optim.SGD(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() data = [(torch.rand(4, 10), torch.randint(0, 5, size=(4, ))) for _ in range(100)] trainer = create_supervised_trainer( model, opt, criterion, output_transform=lambda x, y, y_pred, loss: {"total_loss": loss.item()} ) logger = setup_logger("trainer", level=logging.INFO) logger = FBResearchLogger(logger=logger, show_output=True) logger.attach(trainer, name="Train", every=20, optimizer=opt) trainer.run(data, max_epochs=4)
Output:
2024-04-22 12:05:47,843 trainer INFO: Train: start epoch [1/4] ... Epoch [1/4] [20/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5999 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [40/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9297 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [60/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9985 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [80/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9785 Iter time: 0.0008 s Data prep .. ... Epoch [1/4] [100/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.6211 Iter time: 0.0008 s Data prep . ... Train: Epoch [1/4] Total time: 0:00:00 (0.0008 s / it) ... Train: start epoch [2/4] ... Epoch [2/4] [19/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5981 Iter time: 0.0009 s Data prep .. ... Epoch [2/4] [39/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9013 Iter time: 0.0008 s Data prep .. ... Epoch [2/4] [59/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9811 Iter time: 0.0008 s Data prep .. ... Epoch [2/4] [79/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9434 Iter time: 0.0008 s Data prep .. ... Epoch [2/4] [99/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.6116 Iter time: 0.0008 s Data prep .. ... Train: Epoch [2/4] Total time: 0:00:00 (0.0009 s / it) ... Train: start epoch [3/4] ... Epoch [3/4] [18/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5972 Iter time: 0.0008 s Data prep .. ... Epoch [3/4] [38/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.8753 Iter time: 0.0008 s Data prep .. ... Epoch [3/4] [58/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9657 Iter time: 0.0009 s Data prep .. ... Epoch [3/4] [78/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9112 Iter time: 0.0008 s Data prep .. ... Epoch [3/4] [98/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.6035 Iter time: 0.0008 s Data prep .. ... Train: Epoch [3/4] Total time: 0:00:00 (0.0009 s / it) ... Train: start epoch [4/4] ... Epoch [4/4] [17/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5969 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [37/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.8516 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [57/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.9521 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [77/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.8816 Iter time: 0.0008 s Data prep .. ... Epoch [4/4] [97/100]: ETA: 0:00:00 lr: 0.00100 total_loss: 1.5966 Iter time: 0.0009 s Data prep .. ... Train: Epoch [4/4] Total time: 0:00:00 (0.0009 s / it) ... Train: run completed Total time: 0:00:00
- attach(engine, name, every=1, output_transform=None, state_attributes=None, optimizer=None)[source]#
Attaches all the logging handlers to the given engine.
- Parameters
engine (Engine) – The engine to attach the logging handlers to.
name (str) – The name of the engine (e.g., “Train”, “Validate”) to include in log messages.
every (int) – Frequency of iterations to log information. Logs are generated every ‘every’ iterations.
output_transform (Optional[Callable]) – A function to select the value to log.
state_attributes (Optional[List[str]]) – A list of attributes to log.
optimizer (Optional[Optimizer]) – The optimizer used during training to log current learning rates.
- Return type
None