Shortcuts

Source code for ignite.metrics.mean_absolute_error

from typing import Sequence, Union

import torch

from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce

__all__ = ["MeanAbsoluteError"]


[docs]class MeanAbsoluteError(Metric): r"""Calculates `the mean absolute error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_. .. math:: \text{MAE} = \frac{1}{N} \sum_{i=1}^N \lvert y_{i} - x_{i} \rvert where :math:`y_{i}` is the prediction tensor and :math:`x_{i}` is ground true tensor. - ``update`` must receive output of the form ``(y_pred, y)``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in the format of ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``. If not, ``output_tranform`` can be added to the metric to transform the output into the form expected by the metric. ``y_pred`` and ``y`` should have the same shape. For more information on how metric works with :class:`~ignite.engine.engine.Engine`, visit :ref:`attach-engine`. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = MeanAbsoluteError() metric.attach(default_evaluator, 'mae') preds = torch.tensor([ [1, 2, 4, 1], [2, 3, 1, 5], [1, 3, 5, 1], [1, 5, 1 ,11] ]) target = preds * 0.75 state = default_evaluator.run([[preds, target]]) print(state.metrics['mae']) .. testoutput:: 2.9375 .. versionchanged:: 0.5.1 ``skip_unrolling`` argument is added. """ _state_dict_all_req_keys = ("_sum_of_absolute_errors", "_num_examples")
[docs] @reinit__is_reduced def reset(self) -> None: self._sum_of_absolute_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0
[docs] @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: y_pred, y = output[0].detach(), output[1].detach() absolute_errors = torch.abs(y_pred - y.view_as(y_pred)) self._sum_of_absolute_errors += torch.sum(absolute_errors).to(self._device) self._num_examples += y.shape[0]
[docs] @sync_all_reduce("_sum_of_absolute_errors", "_num_examples") def compute(self) -> Union[float, torch.Tensor]: if self._num_examples == 0: raise NotComputableError("MeanAbsoluteError must have at least one example before it can be computed.") return self._sum_of_absolute_errors.item() / self._num_examples

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 11/07/2024, 2:10:56 PM.

Built with Sphinx using a theme provided by Read the Docs.