[docs]classDaviesBouldinScore(_ClusteringMetricBase):r"""Calculates the `Davies-Bouldin score <https://en.wikipedia.org/wiki/Davies%E2%80%93Bouldin_index>`_. The Davies-Bouldin score evaluates the quality of clustering results. More details can be found `here <https://scikit-learn.org/1.5/modules/clustering.html#davies-bouldin-index>`_. The Davies-Bouldin score is non-negative, where values closer to zero indicate that the clustering result is good (i.e., clusters are well-separated). The computation of this metric is implemented with `sklearn.metrics.davies_bouldin_score <https://scikit-learn.org/1.5/modules/generated/sklearn.metrics.davies_bouldin_score.html>`_. - ``update`` must receive output of the form ``(features, labels)`` or ``{'features': features, 'labels': labels}``. - `features` and `labels` must be of same shape `(B, D)` and `(B,)`. Parameters are inherited from ``EpochMetric.__init__``. Args: output_transform: a callable that is used to transform the :class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the form expected by the metric. This can be useful if, for example, you have a multi-output model and you want to compute the metric with respect to one of the outputs. By default, metrics require the output as ``(features, labels)`` or ``{'features': features, 'labels': labels}``. check_compute_fn: if True, ``compute_fn`` is run on the first batch of data to ensure there are no issues. If issues exist, user is warned that there might be an issue with the ``compute_fn``. Default, True. device: specifies which device updates are accumulated on. Setting the metric's device to be the same as your ``update`` arguments ensures the ``update`` method is non-blocking. By default, CPU. skip_unrolling: specifies whether output should be unrolled before being fed to update method. Should be true for multi-output model, for example, if ``y_pred`` contains multi-ouput as ``(y_pred_a, y_pred_b)`` Alternatively, ``output_transform`` can be used to handle this. Examples: To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine. The output of the engine's ``process_function`` needs to be in format of ``(features, labels)`` or ``{'features': features, 'labels': labels, ...}``. .. include:: defaults.rst :start-after: :orphan: .. testcode:: metric = DaviesBouldinScore() metric.attach(default_evaluator, "davies_bouldin_score") X = torch.tensor([ [-1.04, -0.71, -1.42, -0.28, -0.43], [0.47, 0.96, -0.43, 1.57, -2.24], [-0.62, -0.29, 0.10, -0.72, -1.69], [0.96, -0.77, 0.60, -0.89, 0.49], [-1.33, -1.53, 0.25, -1.60, -2.0], [-0.63, -0.55, -1.03, -0.89, -0.77], [-0.26, -1.67, -0.24, -1.33, -0.40], [-0.20, -1.34, -0.52, -1.55, -1.50], [2.68, 1.13, 2.51, 0.80, 0.92], [0.33, 2.88, 1.35, -0.56, 1.71] ]) Y = torch.tensor([0, 0, 0, 0, 1, 1, 1, 1, 2, 2]) state = default_evaluator.run([{"features": X, "labels": Y}]) print(state.metrics["davies_bouldin_score"]) .. testoutput:: 1.3838673743829881 .. versionadded:: 0.5.2 """def__init__(self,output_transform:Callable[...,Any]=lambdax:x,check_compute_fn:bool=True,device:Union[str,torch.device]=torch.device("cpu"),skip_unrolling:bool=False,)->None:try:fromsklearn.metricsimportdavies_bouldin_score# noqa: F401exceptImportError:raiseModuleNotFoundError("This module requires scikit-learn to be installed.")super().__init__(_davies_bouldin_score,output_transform,check_compute_fn,device,skip_unrolling)