# Torch Export to StableHLO This document describes how to use torch export + torch xla to export to [StableHLO](https://github.com/openxla/stablehlo) format. ``` python from torch.export import export from torch_xla.stablehlo import exported_program_to_stablehlo import torch_xla.core.xla_model as xm import torchvision import torch xla_device = xm.xla_device() resnet18 = torchvision.models.resnet18() # Sample input is a tuple sample_input = (torch.randn(4, 3, 224, 224), ) output = resnet18(*sample_input) exported = export(resnet18, sample_input) stablehlo_program = exported_program_to_stablehlo(exported) # Now stablehlo_program is a callable backed by stablehlo IR. # we can see it's stablehlo code with # here 'forward' is the name of function. Currently we only support # one entry point per program, but in the future we will support # multiple entry points in a program. print(stablehlo_program.get_stablehlo_text('forward')) # we can also print out the bytecode print(stablehlo_program.get_stablehlo_bytecode('forward')) # we can also run the module, to run the stablehlo module, we need to move # our tensors to XLA device. sample_input_xla = tuple(s.to(xla_device) for s in sample_input) output2 = stablehlo_program(*sample_input_xla) print(torch.allclose(output, output2.cpu(), atol=1e-5)) ``` ## Saving StableHLO bytecodes to disk One can now save stablehlo to disk with ``` python stablehlo_program.save('/tmp/stablehlo_dir') ``` The path should be path to an empty directory. If it doesn't exist, it will be created. This directory can be loaded again as another stablehlo_program: ``` python from torch_xla.stablehlo import StableHLOGraphModule stablehlo_program2 = StableHLOGraphModule.load('/tmp/stablehlo_dir') output3 = stablehlo_program2(*sample_input_xla) ``` ## Convert saved StableHLO for serving StableHLO is an open format and it is supported for serving in [tensorflow.serving](https://github.com/tensorflow/serving) model server. However, before giving it to tf.serving, we need to first wrap the generated StableHLO bytecode into a `tf.saved_model` format. For that, first ensure that you have the latest `tensorflow` install in the current python env, if not, install with ``` bash pip install tf-nightly ``` Now, you can run a converter (provided in the torch/xla installation) stablehlo-to-saved-model /tmp/stablehlo_dir /tmp/resnet_tf/1 After that, you can run your model server on the newly generated `tf.saved_model` with tf serving binary. ``` bash docker pull tensorflow/serving docker run -p 8500:8500 \ --mount type=bind,source=/tmp/resnet_tf,target=/models/resnet_tf \ -e MODEL_NAME=resnet_tf -t tensorflow/serving & ``` You can also use the `tf.serving` binary directly without docker. For more details, please follow the [tf serving guide](https://www.tensorflow.org/tfx/serving/serving_basic). ## Common wrappers ### I want to save directly tf.saved_model format without needing to run an separate command. You can accomplish this by using this helper function: ``` python from torch_xla.tf_saved_model_integration import save_torch_module_as_tf_saved_model save_torch_module_as_tf_saved_model( resnet18, # original pytorch torch.nn.Module sample_inputs, # sample inputs used to trace '/tmp/resnet_tf' # directory for tf.saved_model ) ``` ## Other common wrappers ``` python def save_as_stablehlo(exported_model: 'ExportedProgram', stablehlo_dir: os.PathLike, options: Optional[StableHLOExportOptions] = None): ``` `save_as_stablehlo` (also aliased as `torch_xla.save_as_stablehlo`) takes ExportedProgram and saves StableHLO on disk. i.e. same as exported_program_to_stablehlo(...).save(...) ``` python def save_torch_model_as_stablehlo( torchmodel: torch.nn.Module, args: Tuple[Any], path: os.PathLike, options: Optional[StableHLOExportOptions] = None) -> None: """Convert a torch model to a callable backed by StableHLO. ``` takes `torch.nn.Module` and saves StableHLO on disk. i.e. same as torch.export.export followed by save_as_stablehlo ## Files produced by `save_as_stablehlo`. Inside of `/tmp/stablehlo_dir` in the example above, you will find 3 directories: `data`, `constants`, `functions`. Both data and constants will consist of tensors used by the program saved as `numpy.ndarray` using `numpy.save`. The functions directory will contain StableHLO bytecode, here named `forward.bytecode`, human readable StableHLO code (MLIR form) `forward.mlir`, and a JSON file specifying which weights and original user's input become the which positional arguments of this StableHLO function; as well as the dtypes and shapes of every argument. Example: ``` bash $ find /tmp/stablehlo_dir ./functions ./functions/forward.mlir ./functions/forward.bytecode ./functions/forward.meta ./constants ./constants/3 ./constants/1 ./constants/0 ./constants/2 ./data ./data/L__fn___layers_15_feed_forward_w2.weight ./data/L__fn___layers_13_feed_forward_w1.weight ./data/L__fn___layers_3_attention_wo.weight ./data/L__fn___layers_12_ffn_norm_weight ./data/L__fn___layers_25_attention_wo.weight ... ``` The JSON file is serialized form of the `torch_xla.stablehlo.StableHLOFunc` class. This format is currently also in prototype stage and there are no backward compatibility guarantees. The future plan is to standardize a format that the major frameworks (PyTorch, JAX, TensorFlow) can agree. ## Preserving High-Level PyTorch Operations in StableHLO by generating `stablehlo.composite` High level PyTorch ops (e.g. `F.scaled_dot_product_attention`) will be decomposed into low level ops during PyTorch -\> StableHLO lowering. Capturing the high level op in downstream ML compilers can be crucial for genearting a performant, efficient specialized kernels. While pattern matching a bunch of low level ops in the ML compiler can be challenging and error-prone, we offer a more robust method to outline the high-level PyTorch op in StableHLO program - by generating [stablehlo.composite](https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite) for the high level PyTorch ops. With `StableHLOCompositeBuilder`, user can outline an arbitary region within the `forward` function of a `torch.nn.Module`. Then in the exported StableHLO program, a composite op for the outlined region will be produced. **NOTE:** Because the value of non-tensor inputs to the outlined region will be hardcoded in the exported graph, please store those values as composite attributes, if retrieving from the downstream compiler is desired. The following example shows a pratical use case - capturing `scaled_product_attention` ``` python import torch import torch.nn.functional as F from torch_xla import stablehlo from torch_xla.experimental.mark_pattern_utils import StableHLOCompositeBuilder class M(torch.nn.Module): def __init__(self): super().__init__() self.q_proj = torch.nn.Linear(128, 128, bias=False) self.k_proj = torch.nn.Linear(128, 128, bias=False) self.v_proj = torch.nn.Linear(128, 128, bias=False) # Initialize the StableHLOCompositeBuilder with the name of the composite op and its attributes # Note: To capture the value of non-tensor inputs, please pass them as attributes to the builder self.b = StableHLOCompositeBuilder("test.sdpa", {"scale": 0.25, "other_attr": "val"}) def forward(self, x): q = self.q_proj(x) k = self.k_proj(x) v = self.v_proj(x) q, k, v = self.b.mark_inputs(q, k, v) attn_out = F.scaled_dot_product_attention(q, k, v, scale=0.25) attn_out = self.b.mark_outputs(attn_out) attn_out = attn_out + x return attn_out input_args = (torch.randn((10, 8, 128)), ) # torch.export to Exported Program exported = torch.export.export(M(), input_args) # Exported Program to StableHLO stablehlo_gm = stablehlo.exported_program_to_stablehlo(exported) stablehlo = stablehlo_gm.get_stablehlo_text() print(stablehlo) ``` The main StableHLO graph is shown below: ``` none module @IrToHlo.56 attributes {mhlo.cross_program_prefetches = [], mhlo.input_output_alias = [], mhlo.is_dynamic = false, mhlo.use_auto_spmd_partitioning = false} { func.func @main(%arg0: tensor<10x8x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>, %arg3: tensor<128x128xf32>) -> tensor<10x8x128xf32> { ... %10 = stablehlo.composite "test.sdpa" %3, %6, %9 {composite_attributes = {other_attr = "val", scale = 2.500000e-01 : f32}, decomposition = @test.sdpa.impl} : (tensor<10x8x128xf32>, tensor<10x8x128xf32>, tensor<10x8x128xf32>) -> tensor<10x8x128xf32> %11 = stablehlo.add %10, %arg0 : tensor<10x8x128xf32> return %11 : tensor<10x8x128xf32> } func.func private @test.sdpa.impl(%arg0: tensor<10x8x128xf32>, %arg1: tensor<10x8x128xf32>, %arg2: tensor<10x8x128xf32>) -> tensor<10x8x128xf32> { // Actual implementation of the composite ... return %11 : tensor<10x8x128xf32> } ``` The sdpa operation is encapsulated as a stablehlo composite call within the main graph. The name and attributes specified in the torch.nn.Module are propagated. ``` none %10 = stablehlo.composite "test.sdpa" %3, %6, %9 {composite_attributes = {other_attr = "val", scale = 2.500000e-01 : f32}, decomposition = @test.sdpa.impl} ``` The reference PyTorch decomposition of the sdpa operation is captured in a StableHLO function: ``` none func.func private @test.sdpa.impl(%arg0: tensor<10x8x128xf32>, %arg1: tensor<10x8x128xf32>, %arg2: tensor<10x8x128xf32>) -> tensor<10x8x128xf32> { // Actual implementation of the composite ... return %11 : tensor<10x8x128xf32> } ```