.. _transforms: torchvision.transforms ====================== .. currentmodule:: torchvision.transforms Transforms are common image transformations. They can be chained together using :class:`Compose`. Most transform classes have a function equivalent: :ref:`functional transforms ` give fine-grained control over the transformations. This is useful if you have to build a more complex transformation pipeline (e.g. in the case of segmentation tasks). Most transformations accept both `PIL `_ images and tensor images, although some transformations are :ref:`PIL-only ` and some are :ref:`tensor-only `. The :ref:`conversion_transforms` may be used to convert to and from PIL images. The transformations that accept tensor images also accept batches of tensor images. A Tensor Image is a tensor with ``(C, H, W)`` shape, where ``C`` is a number of channels, ``H`` and ``W`` are image height and width. A batch of Tensor Images is a tensor of ``(B, C, H, W)`` shape, where ``B`` is a number of images in the batch. The expected range of the values of a tensor image is implicitely defined by the tensor dtype. Tensor images with a float dtype are expected to have values in ``[0, 1)``. Tensor images with an integer dtype are expected to have values in ``[0, MAX_DTYPE]`` where ``MAX_DTYPE`` is the largest value that can be represented in that dtype. Randomized transformations will apply the same transformation to all the images of a given batch, but they will produce different transformations across calls. For reproducible transformations across calls, you may use :ref:`functional transforms `. The following examples illustate the use of the available transforms: * :ref:`sphx_glr_auto_examples_plot_transforms.py` .. figure:: ../source/auto_examples/images/sphx_glr_plot_transforms_001.png :align: center :scale: 65% * :ref:`sphx_glr_auto_examples_plot_scripted_tensor_transforms.py` .. figure:: ../source/auto_examples/images/sphx_glr_plot_scripted_tensor_transforms_001.png :align: center :scale: 30% .. warning:: Since v0.8.0 all random transformations are using torch default random generator to sample random parameters. It is a backward compatibility breaking change and user should set the random state as following: .. code:: python # Previous versions # import random # random.seed(12) # Now import torch torch.manual_seed(17) Please, keep in mind that the same seed for torch random generator and Python random generator will not produce the same results. Scriptable transforms --------------------- In order to script the transformations, please use ``torch.nn.Sequential`` instead of :class:`Compose`. .. code:: python transforms = torch.nn.Sequential( transforms.CenterCrop(10), transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), ) scripted_transforms = torch.jit.script(transforms) Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor`` and does not require `lambda` functions or ``PIL.Image``. For any custom transformations to be used with ``torch.jit.script``, they should be derived from ``torch.nn.Module``. Compositions of transforms -------------------------- .. autoclass:: Compose Transforms on PIL Image and torch.\*Tensor ------------------------------------------ .. autoclass:: CenterCrop :members: .. autoclass:: ColorJitter :members: .. autoclass:: FiveCrop :members: .. autoclass:: Grayscale :members: .. autoclass:: Pad :members: .. autoclass:: RandomAffine :members: .. autoclass:: RandomApply .. autoclass:: RandomCrop :members: .. autoclass:: RandomGrayscale :members: .. autoclass:: RandomHorizontalFlip :members: .. autoclass:: RandomPerspective :members: .. autoclass:: RandomResizedCrop :members: .. autoclass:: RandomRotation :members: .. autoclass:: RandomSizedCrop :members: .. autoclass:: RandomVerticalFlip :members: .. autoclass:: Resize :members: .. autoclass:: Scale :members: .. autoclass:: TenCrop :members: .. autoclass:: GaussianBlur :members: .. autoclass:: RandomInvert :members: .. autoclass:: RandomPosterize :members: .. autoclass:: RandomSolarize :members: .. autoclass:: RandomAdjustSharpness :members: .. autoclass:: RandomAutocontrast :members: .. autoclass:: RandomEqualize :members: .. _transforms_pil_only: Transforms on PIL Image only ---------------------------- .. autoclass:: RandomChoice .. autoclass:: RandomOrder .. _transforms_tensor_only: Transforms on torch.\*Tensor only --------------------------------- .. autoclass:: LinearTransformation :members: .. autoclass:: Normalize :members: .. autoclass:: RandomErasing :members: .. autoclass:: ConvertImageDtype .. _conversion_transforms: Conversion Transforms --------------------- .. autoclass:: ToPILImage :members: .. autoclass:: ToTensor :members: Generic Transforms ------------------ .. autoclass:: Lambda :members: AutoAugment Transforms ---------------------- `AutoAugment `_ is a common Data Augmentation technique that can improve the accuracy of Image Classification models. Though the data augmentation policies are directly linked to their trained dataset, empirical studies show that ImageNet policies provide significant improvements when applied to other datasets. In TorchVision we implemented 3 policies learned on the following datasets: ImageNet, CIFAR10 and SVHN. The new transform can be used standalone or mixed-and-matched with existing transforms: .. autoclass:: AutoAugmentPolicy :members: .. autoclass:: AutoAugment :members: .. _functional_transforms: Functional Transforms --------------------- Functional transforms give you fine-grained control of the transformation pipeline. As opposed to the transformations above, functional transforms don't contain a random number generator for their parameters. That means you have to specify/generate all parameters, but the functional transform will give you reproducible results across calls. Example: you can apply a functional transform with the same parameters to multiple images like this: .. code:: python import torchvision.transforms.functional as TF import random def my_segmentation_transforms(image, segmentation): if random.random() > 0.5: angle = random.randint(-30, 30) image = TF.rotate(image, angle) segmentation = TF.rotate(segmentation, angle) # more transforms ... return image, segmentation Example: you can use a functional transform to build transform classes with custom behavior: .. code:: python import torchvision.transforms.functional as TF import random class MyRotationTransform: """Rotate by one of the given angles.""" def __init__(self, angles): self.angles = angles def __call__(self, x): angle = random.choice(self.angles) return TF.rotate(x, angle) rotation_transform = MyRotationTransform(angles=[-30, -15, 0, 15, 30]) .. automodule:: torchvision.transforms.functional :members: