.. note::
:class: sphx-glr-download-link-note
Click :ref:`here ` to download the full example code
.. rst-class:: sphx-glr-example-title
.. _sphx_glr_beginner_examples_tensor_two_layer_net_tensor.py:
PyTorch: Tensors
----------------
A fully-connected ReLU network with one hidden layer and no biases, trained to
predict y from x by minimizing squared Euclidean distance.
This implementation uses PyTorch tensors to manually compute the forward pass,
loss, and backward pass.
A PyTorch Tensor is basically the same as a numpy array: it does not know
anything about deep learning or computational graphs or gradients, and is just
a generic n-dimensional array to be used for arbitrary numeric computation.
The biggest difference between a numpy array and a PyTorch Tensor is that
a PyTorch Tensor can run on either CPU or GPU. To run operations on the GPU,
just cast the Tensor to a cuda datatype.
.. code-block:: python
import torch
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10
# Create random input and output data
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)
# Randomly initialize weights
w1 = torch.randn(D_in, H, device=device, dtype=dtype)
w2 = torch.randn(H, D_out, device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.mm(w1)
h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2)
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
print(t, loss)
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h < 0] = 0
grad_w1 = x.t().mm(grad_h)
# Update weights using gradient descent
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2
**Total running time of the script:** ( 0 minutes 0.000 seconds)
.. _sphx_glr_download_beginner_examples_tensor_two_layer_net_tensor.py:
.. only :: html
.. container:: sphx-glr-footer
:class: sphx-glr-footer-example
.. container:: sphx-glr-download
:download:`Download Python source code: two_layer_net_tensor.py `
.. container:: sphx-glr-download
:download:`Download Jupyter notebook: two_layer_net_tensor.ipynb `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery `_