# -*- coding: utf-8 -*-
"""
PyTorch: Tensors
----------------
A third order polynomial, trained to predict :math:`y=\sin(x)` from :math:`-\pi`
to :math:`pi` by minimizing squared Euclidean distance.
This implementation uses PyTorch tensors to manually compute the forward pass,
loss, and backward pass.
A PyTorch Tensor is basically the same as a numpy array: it does not know
anything about deep learning or computational graphs or gradients, and is just
a generic n-dimensional array to be used for arbitrary numeric computation.
The biggest difference between a numpy array and a PyTorch Tensor is that
a PyTorch Tensor can run on either CPU or GPU. To run operations on the GPU,
just cast the Tensor to a cuda datatype.
"""
import torch
import math
dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU
# Create random input and output data
x = torch.linspace(-math.pi, math.pi, 2000, device=device, dtype=dtype)
y = torch.sin(x)
# Randomly initialize weights
a = torch.randn((), device=device, dtype=dtype)
b = torch.randn((), device=device, dtype=dtype)
c = torch.randn((), device=device, dtype=dtype)
d = torch.randn((), device=device, dtype=dtype)
learning_rate = 1e-6
for t in range(2000):
# Forward pass: compute predicted y
y_pred = a + b * x + c * x ** 2 + d * x ** 3
# Compute and print loss
loss = (y_pred - y).pow(2).sum().item()
if t % 100 == 99:
print(t, loss)
# Backprop to compute gradients of a, b, c, d with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_a = grad_y_pred.sum()
grad_b = (grad_y_pred * x).sum()
grad_c = (grad_y_pred * x ** 2).sum()
grad_d = (grad_y_pred * x ** 3).sum()
# Update weights using gradient descent
a -= learning_rate * grad_a
b -= learning_rate * grad_b
c -= learning_rate * grad_c
d -= learning_rate * grad_d
print(f'Result: y = {a.item()} + {b.item()} x + {c.item()} x^2 + {d.item()} x^3')