Shortcuts

Source code for torchx.pipelines.kfp.adapter

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import json
import os
import os.path
import shlex
from typing import Mapping, Optional, Tuple

import yaml
from kfp import components, dsl

# @manual=fbsource//third-party/pypi/kfp:kfp
from kfp.components.structures import ComponentSpec, OutputSpec
from kubernetes.client.models import (
    V1ContainerPort,
    V1EmptyDirVolumeSource,
    V1Volume,
    V1VolumeMount,
)
from torchx.schedulers.kubernetes_scheduler import app_to_resource, pod_labels
from torchx.specs import api
from typing_extensions import Protocol

from .version import __version__ as __version__  # noqa F401


[docs]def component_spec_from_app(app: api.AppDef) -> Tuple[str, api.Role]: """ component_spec_from_app takes in a TorchX component and generates the yaml spec for it. Notably this doesn't apply resources or port_maps since those must be applied at runtime which is why it returns the role spec as well. >>> from torchx import specs >>> from torchx.pipelines.kfp.adapter import component_spec_from_app >>> app_def = specs.AppDef( ... name="trainer", ... roles=[specs.Role("trainer", image="foo:latest")], ... ) >>> component_spec_from_app(app_def) ('description: ...', Role(...)) """ assert len(app.roles) == 1, f"KFP adapter only support one role, got {app.roles}" role = app.roles[0] assert ( role.num_replicas == 1 ), f"KFP adapter only supports one replica, got {app.num_replicas}" command = [role.entrypoint, *role.args] spec = { "name": f"{app.name}-{role.name}", "description": f"KFP wrapper for TorchX component {app.name}, role {role.name}", "implementation": { "container": { "image": role.image, "command": command, "env": role.env, } }, "outputs": [], } return yaml.dump(spec), role
[docs]class ContainerFactory(Protocol): """ ContainerFactory is a protocol that represents a function that when called produces a kfp.dsl.ContainerOp. """ def __call__(self, *args: object, **kwargs: object) -> dsl.ContainerOp: ...
class KFPContainerFactory(ContainerFactory, Protocol): """ KFPContainerFactory is a ContainerFactory that also has some KFP metadata attached to it. """ component_spec: ComponentSpec METADATA_FILE = "/tmp/outputs/mlpipeline-ui-metadata/data.json"
[docs]def component_from_app( app: api.AppDef, ui_metadata: Optional[Mapping[str, object]] = None ) -> ContainerFactory: """ component_from_app takes in a TorchX component/AppDef and returns a KFP ContainerOp factory. This is equivalent to the `kfp.components.load_component_from_* <https://kubeflow-pipelines.readthedocs.io/en/stable/source/kfp.components.html#kfp.components.load_component_from_text>`_ methods. Args: app: The AppDef to generate a KFP container factory for. ui_metadata: KFP UI Metadata to output so you can have model results show up in the UI. See https://www.kubeflow.org/docs/components/pipelines/sdk/output-viewer/ for more info on the format. >>> from torchx import specs >>> from torchx.pipelines.kfp.adapter import component_from_app >>> app_def = specs.AppDef( ... name="trainer", ... roles=[specs.Role("trainer", image="foo:latest")], ... ) >>> component_from_app(app_def) <function component_from_app...> """ role_spec: api.Role spec, role_spec = component_spec_from_app(app) resources: api.Resource = role_spec.resource assert ( len(resources.capabilities) == 0 ), f"KFP doesn't support capabilities, got {resources.capabilities}" component_factory: KFPContainerFactory = components.load_component_from_text(spec) if ui_metadata is not None: # pyre-fixme[16]: `ComponentSpec` has no attribute `outputs` component_factory.component_spec.outputs.append( OutputSpec( name="mlpipeline-ui-metadata", type="MLPipeline UI Metadata", description="ui metadata", ) ) def factory_wrapper(*args: object, **kwargs: object) -> dsl.ContainerOp: c = component_factory(*args, **kwargs) container = c.container if ui_metadata is not None: # We generate the UI metadata from the sidecar so we need to make # both the container and the sidecar share the same tmp directory so # the outputs appear in the original container. c.add_volume(V1Volume(name="tmp", empty_dir=V1EmptyDirVolumeSource())) container.add_volume_mount( V1VolumeMount( name="tmp", mount_path="/tmp/", ) ) c.output_artifact_paths["mlpipeline-ui-metadata"] = METADATA_FILE c.add_sidecar(_ui_metadata_sidecar(ui_metadata)) cpu = resources.cpu if cpu >= 0: cpu_str = f"{int(cpu*1000)}m" container.set_cpu_request(cpu_str) container.set_cpu_limit(cpu_str) mem = resources.memMB if mem >= 0: mem_str = f"{int(mem)}M" container.set_memory_request(mem_str) container.set_memory_limit(mem_str) gpu = resources.gpu if gpu > 0: container.set_gpu_limit(str(gpu)) for name, port in role_spec.port_map.items(): container.add_port( V1ContainerPort( name=name, container_port=port, ), ) c.pod_labels.update(pod_labels(app, 0, role_spec, 0)) return c return factory_wrapper
def _ui_metadata_sidecar( ui_metadata: Mapping[str, object], image: str = "alpine" ) -> dsl.Sidecar: shell_encoded = shlex.quote(json.dumps(ui_metadata)) dirname = os.path.dirname(METADATA_FILE) return dsl.Sidecar( name="ui-metadata-sidecar", image=image, command=[ "sh", "-c", f"mkdir -p {dirname}; echo {shell_encoded} > {METADATA_FILE}", ], mirror_volume_mounts=True, )
[docs]def container_from_app( app: api.AppDef, *args: object, ui_metadata: Optional[Mapping[str, object]] = None, **kwargs: object, ) -> dsl.ContainerOp: """ container_from_app transforms the app into a KFP component and returns a corresponding ContainerOp instance. See component_from_app for description on the arguments. Any unspecified arguments are passed through to the KFP container factory method. >>> import kfp >>> from torchx import specs >>> from torchx.pipelines.kfp.adapter import container_from_app >>> app_def = specs.AppDef( ... name="trainer", ... roles=[specs.Role("trainer", image="foo:latest")], ... ) >>> def pipeline(): ... trainer = container_from_app(app_def) ... print(trainer) >>> kfp.compiler.Compiler().compile( ... pipeline_func=pipeline, ... package_path="/tmp/pipeline.yaml", ... ) {'ContainerOp': {... 'name': 'trainer-trainer', ...}} """ factory = component_from_app(app, ui_metadata) return factory(*args, **kwargs)
[docs]def resource_from_app( app: api.AppDef, queue: str, service_account: Optional[str] = None, ) -> dsl.ResourceOp: """ resource_from_app generates a KFP ResourceOp from the provided app that uses the Volcano job scheduler on Kubernetes to run distributed apps. See https://volcano.sh/en/docs/ for more info on Volcano and how to install. Args: app: The torchx AppDef to adapt. queue: the Volcano queue to schedule the operator in. >>> import kfp >>> from torchx import specs >>> from torchx.pipelines.kfp.adapter import resource_from_app >>> app_def = specs.AppDef( ... name="trainer", ... roles=[specs.Role("trainer", image="foo:latest", num_replicas=3)], ... ) >>> def pipeline(): ... trainer = resource_from_app(app_def, queue="test") ... print(trainer) >>> kfp.compiler.Compiler().compile( ... pipeline_func=pipeline, ... package_path="/tmp/pipeline.yaml", ... ) {'ResourceOp': {... 'name': 'trainer-0', ... 'name': 'trainer-1', ... 'name': 'trainer-2', ...}} """ return dsl.ResourceOp( name=app.name, action="create", success_condition="status.state.phase = Completed", failure_condition="status.state.phase = Failed", k8s_resource=app_to_resource(app, queue, service_account=service_account), )

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources