Source code for torchtune.models.phi3._model_builders
from typing import List, Optional
from torchtune.models.phi3._component_builders import phi3, lora_phi3
from torchtune.models.phi3._tokenizer import Phi3MiniTokenizer
from torchtune.modules import TransformerDecoder
from torchtune.modules.peft import LORA_ATTN_MODULES
from functools import partial
from torchtune.modules.transforms.tokenizers import parse_hf_tokenizer_json
from torchtune.data._prompt_templates import _TemplateType
from torchtune.data._prompt_templates import _get_prompt_template
"""
Model builders build specific instantiations using component builders. For example
the ``phi3_mini`` model builder uses the ``phi3`` component builder.
"""
[docs]def phi3_mini() -> TransformerDecoder:
"""
Builder for creating the Phi3 Mini 4K Instruct Model.
Ref: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
Note:
This model does not currently support 128K context length nor optimizations
such as sliding window attention.
Returns:
TransformerDecoder: Instantiation of Phi3 Mini 4K Instruct Model
"""
return phi3(
vocab_size=32_064,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=3072,
intermediate_dim=8192,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
)
[docs]def phi3_mini_tokenizer(path: str, special_tokens_path: Optional[str] = None, max_seq_len: Optional[int] = None, prompt_template: Optional[_TemplateType] = None, truncation_type: str = "right",) -> Phi3MiniTokenizer:
"""Phi-3 Mini tokenizer.
Ref: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/tokenizer_config.json
Args:
path (str): Path to the SPM tokenizer model.
special_tokens_path (Optional[str]): Path to ``tokenizer.json`` from Hugging Face
model files that contains all registered special tokens, or a local json file
structured similarly. Default is None to use the canonical Phi3 special tokens.
max_seq_len (Optional[int]): maximum sequence length for tokenizing a single list of messages,
after which the input will be truncated. Default is None.
prompt_template (Optional[_TemplateType]): optional specified prompt template.
If a string, it is assumed to be the dotpath of a :class:`~torchtune.data.PromptTemplateInterface`
class. If a dictionary, it is assumed to be a custom prompt template mapping role to the
prepend/append tags.
truncation_type (str): type of truncation to apply, either "left" or "right".
Default is "right".
Note:
This tokenizer includes typical LM EOS and BOS tokens like
<s>, </s>, and <unk>. However, to support chat completion,
it is also augmented with special tokens like <endoftext>
and <assistant>.
Returns:
Phi3MiniSentencePieceBaseTokenizer: Instantiation of the SPM tokenizer.
"""
special_tokens = parse_hf_tokenizer_json(special_tokens_path) if special_tokens_path is not None else None
template = _get_prompt_template(prompt_template) if prompt_template is not None else None
return Phi3MiniTokenizer(path=path, special_tokens=special_tokens, max_seq_len=max_seq_len, prompt_template=template, truncation_type=truncation_type)
[docs]def lora_phi3_mini(
lora_attn_modules: List[LORA_ATTN_MODULES],
apply_lora_to_mlp: bool = False,
apply_lora_to_output: bool = False,
lora_rank: int = 8,
lora_alpha: float = 16,
lora_dropout: float = 0.0,
use_dora: bool = False,
quantize_base: bool = False,
) -> TransformerDecoder:
"""
Builder for creating a Phi3 Mini (3.8b) model with LoRA enabled.
The Phi3 defaults are the same as in :func:`~torchtune.models.phi3.phi3_mini`,
while LoRA default params are based on
https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43.
Args:
lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers
LoRA should be applied to in each self-attention block. Options are
``{"q_proj", "k_proj", "v_proj", "output_proj"}``.
apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer.
Default: False
apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection.
Default: False
lora_rank (int): rank of each low-rank approximation
lora_alpha (float): scaling factor for the low-rank approximation
lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0
use_dora (bool): Decompose the LoRA weight into magnitude and direction, as
introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353).
quantize_base (bool): Whether to quantize base model weights
Returns:
TransformerDecoder: Instantiation of Phi3 Mini model with LoRA applied
"""
return lora_phi3(
lora_attn_modules=lora_attn_modules,
apply_lora_to_mlp=apply_lora_to_mlp,
apply_lora_to_output=apply_lora_to_output,
vocab_size=32_064,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=3072,
intermediate_dim=8192,
max_seq_len=4096,
attn_dropout=0.0,
norm_eps=1e-5,
lora_rank=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
use_dora=use_dora,
quantize_base=quantize_base,
)
qlora_phi3_mini = partial(lora_phi3_mini, quantize_base=True)
qlora_phi3_mini.__doc__ = """
Builder for creating a Phi3 mini model with QLoRA enabled. Base model weights in linear layers
that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314.
Please see `lora_phi3_mini` for full API arguments.
"""