Shortcuts

Source code for torchtune.models.llama3_2_vision._model_builders

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

from functools import partial
from typing import List, Optional

from torchtune.data._prompt_templates import _get_prompt_template, _TemplateType

from torchtune.models.llama3_2_vision._component_builders import (  # noqa
    llama3_2_vision_decoder,
    llama3_2_vision_encoder,
    lora_llama3_2_vision_decoder,
    lora_llama3_2_vision_encoder,
    LoRATrainable,
)

from torchtune.models.llama3_2_vision._transform import Llama3VisionTransform
from torchtune.modules.model_fusion import DeepFusionModel
from torchtune.modules.peft import LORA_ATTN_MODULES


[docs]def llama3_2_vision_transform( path: str, max_seq_len: int = 8192, image_size: int = 560, special_tokens_path: Optional[str] = None, prompt_template: Optional[_TemplateType] = None, ) -> Llama3VisionTransform: """ Data Transforms (including Tokenizer) for Llama3 Vision. Args: path (str): path to the tokenizer max_seq_len (int): maximum sequence length for tokenizing a single list of messages, after which the input will be truncated. image_size (int): Base image size that images will be tiled and resized to. Default is 560 for Instruct weights, use 448 for pre-trained. special_tokens_path (Optional[str]): Path to ``tokenizer.json`` from Hugging Face model files that contains all registered special tokens, or a local json file structured similarly. Default is None to use the canonical Llama3 special tokens. prompt_template (Optional[_TemplateType]): optional specified prompt template. If a string, it is assumed to be the dotpath of a :class:`~torchtune.data.PromptTemplateInterface` class. If a dictionary, it is assumed to be a custom prompt template mapping role to the prepend/append tags. Returns: Llama3VisionTransform: Instantiation of the Llama 3.2 vision transform """ template = ( _get_prompt_template(prompt_template) if prompt_template is not None else None ) return Llama3VisionTransform( path=path, special_tokens_path=special_tokens_path, tile_size=image_size, patch_size=14, max_num_tiles=4, max_seq_len=max_seq_len, image_mean=(0.48145466, 0.4578275, 0.40821073), image_std=(0.26862954, 0.26130258, 0.27577711), prompt_template=template, )
[docs]def llama3_2_vision_11b( decoder_trainable: bool = False, encoder_trainable: bool = True, fusion_trainable: bool = True, image_size: int = 560, ) -> DeepFusionModel: """Llama 3.2 Vision 11B model Args: decoder_trainable (bool): Whether to make decoder params trainable. Default is False. encoder_trainable (bool): Whether to make encoder params trainable. Default is True. fusion_trainable (bool): Whether to make fusion params trainable. Default is True. image_size (int): Base image size that images will be tiled and resized to. Default is 560 for Instruct weights, use 448 for pre-trained. Returns: DeepFusionModel: Instantiation of the Llama 3.2 Vision 11B model """ encoder = llama3_2_vision_encoder( patch_size=14, num_heads=16, clip_embed_dim=1280, clip_num_layers=32, clip_hidden_states=[3, 7, 15, 23, 30], decoder_embed_dim=4096, num_layers_projection=8, tile_size=image_size, max_num_tiles=4, in_channels=3, ) decoder = llama3_2_vision_decoder( vocab_size=128_256, num_layers=32, fusion_interval=4, num_special_tokens=8, num_heads=32, num_kv_heads=8, embed_dim=4096, max_seq_len=131_072, encoder_max_seq_len=128_080, # 20*6404 rope_base=500_000, intermediate_dim=14336, ) return DeepFusionModel( encoder=encoder, decoder=decoder, encoder_trainable=encoder_trainable, decoder_trainable=decoder_trainable, fusion_trainable=fusion_trainable, )
[docs]def lora_llama3_2_vision_11b( lora_attn_modules: List[LORA_ATTN_MODULES], decoder_trainable: str = "frozen", encoder_trainable: str = "lora", fusion_trainable: str = "lora", apply_lora_to_mlp: bool = False, apply_lora_to_output: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, image_size: int = 560, ) -> DeepFusionModel: """ Return a version of Llama3.2 vision (an instance of :func:`~torchtune.modules.model_fusion.DeepFusionModel`) with LoRA applied based on the passed in configuration. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. decoder_trainable (str): Option to set decoder params as fully trainble (full), lora trainable (lora), or frozen (frozen). The default is "frozen". encoder_trainable (str): Option to set encoder params as fully trainble (full), lora trainable (lora), or frozen (frozen). The default is "lora". fusion_trainable (str): Option to set fusion params as fully trainble (full), lora trainable (lora), or frozen (frozen). The default is "lora". apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): LoRA dropout probability. Default: 0.0 quantize_base: (bool): Whether to quantize base model weights or not. Only applied to base weights within linear layers LoRA is applied to. The final output linear projection is not supported for quantization currently. image_size (int): Base image size that images will be tiled and resized to. Default is 560 for Instruct weights, use 448 for pre-trained. Returns: DeepFusionModel: Instantiation of Llama3.2 vision model with LoRA applied to a subset of the attention projections in each layer. """ decoder_type = LoRATrainable(decoder_trainable.lower()) encoder_type = LoRATrainable(encoder_trainable.lower()) fusion_type = LoRATrainable(fusion_trainable.lower()) assert LoRATrainable.FULL not in [ decoder_type, encoder_type, fusion_type, ], "We've temporarily removed support for mixed LoRA + Full Finetuning yet. Please don't use the 'full' option and use llama3_2_vision_11b if you need full finetuning" encoder = lora_llama3_2_vision_encoder( encoder_lora=encoder_type == LoRATrainable.LORA, fusion_lora=fusion_type == LoRATrainable.LORA, lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, apply_lora_to_output=apply_lora_to_output, patch_size=14, num_heads=16, clip_embed_dim=1280, clip_num_layers=32, clip_hidden_states=[3, 7, 15, 23, 30], decoder_embed_dim=4096, num_layers_projection=8, tile_size=image_size, max_num_tiles=4, in_channels=3, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, # Update scaler block size to ensure that weights can be quantized evenly across 1, 2, 4, 6, 8 GPUs. # This is dependent on ``clip_embed_dim`` so if that is updated, this variable should be as well scaler_block_size=200 if quantize_base else None, ) decoder = lora_llama3_2_vision_decoder( decoder_lora=decoder_type == LoRATrainable.LORA, fusion_lora=fusion_type == LoRATrainable.LORA, lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, apply_lora_to_output=apply_lora_to_output, vocab_size=128_256, num_layers=32, fusion_interval=4, num_special_tokens=8, num_heads=32, num_kv_heads=8, embed_dim=4096, max_seq_len=131_072, encoder_max_seq_len=128_080, # 20*6404 rope_base=500_000, intermediate_dim=14336, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, ) return DeepFusionModel( encoder=encoder, decoder=decoder, encoder_trainable=encoder_type != LoRATrainable.FROZEN, decoder_trainable=decoder_type != LoRATrainable.FROZEN, fusion_trainable=fusion_type != LoRATrainable.FROZEN, )
def llama3_2_vision_90b( decoder_trainable: bool = False, encoder_trainable: bool = True, fusion_trainable: bool = True, image_size: int = 560, ) -> DeepFusionModel: """Llama 3.2 Vision 90B model Args: decoder_trainable (bool): Whether to make decoder params trainable. Default is False. encoder_trainable (bool): Whether to make encoder params trainable. Default is True. fusion_trainable (bool): Whether to make fusion params trainable. Default is True. image_size (int): Base image size that images will be tiled and resized to. Default is 560 for Instruct weights, use 448 for pre-trained. Returns: DeepFusionModel: Instantiation of the Llama 3.2 Vision 90B model """ encoder = llama3_2_vision_encoder( patch_size=14, num_heads=16, clip_embed_dim=1280, clip_num_layers=32, clip_hidden_states=[3, 7, 15, 23, 30], decoder_embed_dim=8192, num_layers_projection=8, tile_size=image_size, max_num_tiles=4, in_channels=3, ) decoder = llama3_2_vision_decoder( vocab_size=128_256, num_layers=80, fusion_interval=4, num_special_tokens=8, num_heads=64, num_kv_heads=8, embed_dim=8192, max_seq_len=131_072, encoder_max_seq_len=128_080, # 20*6404 rope_base=500_000, intermediate_dim=28672, ) return DeepFusionModel( encoder=encoder, decoder=decoder, encoder_trainable=encoder_trainable, decoder_trainable=decoder_trainable, fusion_trainable=fusion_trainable, ) def lora_llama3_2_vision_90b( lora_attn_modules: List[LORA_ATTN_MODULES], decoder_trainable: str = "frozen", encoder_trainable: str = "lora", fusion_trainable: str = "lora", apply_lora_to_mlp: bool = False, apply_lora_to_output: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, image_size: int = 560, ) -> DeepFusionModel: """ Return a version of Llama3.2 vision (an instance of :func:`~torchtune.modules.model_fusion.DeepFusionModel`) with LoRA applied based on the passed in configuration. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. decoder_trainable (str): Option to set decoder params as fully trainble (full), lora trainable (lora), or frozen (frozen). The default is "frozen". encoder_trainable (str): Option to set encoder params as fully trainble (full), lora trainable (lora), or frozen (frozen). The default is "lora". fusion_trainable (str): Option to set fusion params as fully trainble (full), lora trainable (lora), or frozen (frozen). The default is "lora". apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False apply_lora_to_output (bool): whether to apply LoRA to the model's final output projection. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): LoRA dropout probability. Default: 0.0 quantize_base: (bool): Whether to quantize base model weights or not. Only applied to base weights within linear layers LoRA is applied to. The final output linear projection is not supported for quantization currently. image_size (int): Base image size that images will be tiled and resized to. Default is 560 for Instruct weights, use 448 for pre-trained. Returns: DeepFusionModel: Instantiation of Llama3.2 vision model with LoRA applied to a subset of the attention projections in each layer. """ decoder_type = LoRATrainable(decoder_trainable.lower()) encoder_type = LoRATrainable(encoder_trainable.lower()) fusion_type = LoRATrainable(fusion_trainable.lower()) assert LoRATrainable.FULL not in [ decoder_type, encoder_type, fusion_type, ], "We've temporarily removed support for mixed LoRA + Full Finetuning yet. Please don't use the 'full' option and use llama3_2_vision_90b if you need full finetuning" encoder = lora_llama3_2_vision_encoder( encoder_lora=encoder_type == LoRATrainable.LORA, fusion_lora=fusion_type == LoRATrainable.LORA, lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, apply_lora_to_output=apply_lora_to_output, patch_size=14, num_heads=16, clip_embed_dim=1280, clip_num_layers=32, clip_hidden_states=[3, 7, 15, 23, 30], decoder_embed_dim=8192, num_layers_projection=8, tile_size=image_size, max_num_tiles=4, in_channels=3, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, # Update scaler block size to ensure that weights can be quantized evenly across 1, 2, 4, 6, 8 GPUs. # This is dependent on ``clip_embed_dim`` so if that is updated, this variable should be as well scaler_block_size=200 if quantize_base else None, ) decoder = lora_llama3_2_vision_decoder( decoder_lora=decoder_type == LoRATrainable.LORA, fusion_lora=fusion_type == LoRATrainable.LORA, lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, apply_lora_to_output=apply_lora_to_output, vocab_size=128_256, num_layers=80, fusion_interval=4, num_special_tokens=8, num_heads=64, num_kv_heads=8, embed_dim=8192, max_seq_len=131_072, encoder_max_seq_len=128_080, # 20*6404 rope_base=500_000, intermediate_dim=28672, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, ) return DeepFusionModel( encoder=encoder, decoder=decoder, encoder_trainable=encoder_type != LoRATrainable.FROZEN, decoder_trainable=decoder_type != LoRATrainable.FROZEN, fusion_trainable=fusion_type != LoRATrainable.FROZEN, ) qlora_llama3_2_vision_11b = partial(lora_llama3_2_vision_11b, quantize_base=True) qlora_llama3_2_vision_11b.__doc__ = """ Builder for creating a Llama3.2 vision 11B model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_llama3_2_vision_11b` for full API arguments. """ qlora_llama3_2_vision_90b = partial(lora_llama3_2_vision_90b, quantize_base=True) qlora_llama3_2_vision_90b.__doc__ = """ Builder for creating a Llama3.2 vision 90B model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_llama3_2_vision_90b` for full API arguments. """

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources