Shortcuts

Source code for torchtune.models.gemma2._model_builders

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from functools import partial
from typing import List

from torchtune.models.gemma2._component_builders import gemma2, lora_gemma2
from torchtune.modules import TransformerDecoder

from torchtune.modules.peft import LORA_ATTN_MODULES

"""
Model builders build specific instantiations using component builders. For example
the ``gemma_2b`` model builder uses the ``gemma2`` component builder.
"""


[docs]def gemma2_2b() -> TransformerDecoder: """ Builder for creating a Gemma2 2B model initialized w/ the default 2b parameter values from: https://github.com/google/gemma_pytorch/blob/main/gemma/config.py Returns: TransformerDecoder: Instantiation of Gemma2 2B model """ return gemma2( vocab_size=256_000, num_layers=26, num_heads=8, head_dim=256, num_kv_heads=4, embed_dim=2304, intermediate_dim=9216, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, hidden_capping_value=30.0, final_capping_value=50.0, sliding_window_size=4096, )
[docs]def lora_gemma2_2b( lora_attn_modules: List[LORA_ATTN_MODULES], apply_lora_to_mlp: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, ) -> TransformerDecoder: """ Builder for creating a Gemma2 2B model with LoRA enabled. The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_2b`, while LoRA default params are based on https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0 use_dora (bool): Decompose the LoRA weight into magnitude and direction, as introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353). quantize_base (bool): Whether to quantize base model weights Returns: TransformerDecoder: Instantiation of Gemma2 2B model with LoRA applied """ return lora_gemma2( lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, vocab_size=256_000, num_layers=26, num_heads=8, head_dim=256, num_kv_heads=4, embed_dim=2304, intermediate_dim=9216, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, hidden_capping_value=30.0, final_capping_value=50.0, sliding_window_size=4096, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, )
qlora_gemma2_2b = partial(lora_gemma2_2b, quantize_base=True) qlora_gemma2_2b.__doc__ = """ Builder for creating a Gemma2 model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_gemma2_2b` for full API arguments. """
[docs]def gemma2_9b() -> TransformerDecoder: """ Builder for creating a Gemma2 9B model initialized w/ the default 9b parameter values from: https://github.com/google/gemma_pytorch/blob/main/gemma/config.py Returns: TransformerDecoder: Instantiation of Gemma 9B model """ return gemma2( vocab_size=256_000, num_layers=42, num_heads=16, head_dim=256, num_kv_heads=8, embed_dim=3584, intermediate_dim=14336, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, hidden_capping_value=30.0, final_capping_value=50.0, sliding_window_size=4096, )
[docs]def lora_gemma2_9b( lora_attn_modules: List[LORA_ATTN_MODULES], apply_lora_to_mlp: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, ) -> TransformerDecoder: """ Builder for creating a Gemma 9B model with LoRA enabled. The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_7b`, while LoRA default params are based on https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0 use_dora (bool): Decompose the LoRA weight into magnitude and direction, as introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353). quantize_base (bool): Whether to quantize base model weights Returns: TransformerDecoder: Instantiation of Gemma2 9B model with LoRA applied """ return lora_gemma2( lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, vocab_size=256_000, num_layers=42, num_heads=16, head_dim=256, num_kv_heads=8, embed_dim=3584, intermediate_dim=14336, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, hidden_capping_value=30.0, final_capping_value=50.0, sliding_window_size=4096, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, )
qlora_gemma2_9b = partial(lora_gemma2_9b, quantize_base=True) qlora_gemma2_9b.__doc__ = """ Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_gemma2_9b` for full API arguments. """
[docs]def gemma2_27b() -> TransformerDecoder: """ Builder for creating a Gemma2 27B model initialized w/ the default 27b parameter values from: https://github.com/google/gemma_pytorch/blob/main/gemma/config.py Returns: TransformerDecoder: Instantiation of Gemma2 27B model """ return gemma2( vocab_size=256_000, num_layers=46, num_heads=32, head_dim=128, num_kv_heads=16, embed_dim=4608, intermediate_dim=36864, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, hidden_capping_value=30.0, final_capping_value=50.0, sliding_window_size=4096, query_pre_attn_scalar=144, )
[docs]def lora_gemma2_27b( lora_attn_modules: List[LORA_ATTN_MODULES], apply_lora_to_mlp: bool = False, lora_rank: int = 8, lora_alpha: float = 16, lora_dropout: float = 0.0, use_dora: bool = False, quantize_base: bool = False, ) -> TransformerDecoder: """ Builder for creating a Gemma2 27B model with LoRA enabled. The Gemma defaults are the same as in :func:`~torchtune.models.gemma.gemma_7b`, while LoRA default params are based on https://github.com/tloen/alpaca-lora/blob/8bb8579e403dc78e37fe81ffbb253c413007323f/finetune.py#L41-L43. Args: lora_attn_modules (List[LORA_ATTN_MODULES]): list of which linear layers LoRA should be applied to in each self-attention block. Options are ``{"q_proj", "k_proj", "v_proj", "output_proj"}``. apply_lora_to_mlp (bool): whether to apply LoRA to the MLP in each transformer layer. Default: False lora_rank (int): rank of each low-rank approximation lora_alpha (float): scaling factor for the low-rank approximation lora_dropout (float): dropout probability for the low-rank approximation. Default: 0.0 use_dora (bool): Decompose the LoRA weight into magnitude and direction, as introduced in "DoRA: Weight-Decomposed Low-Rank Adaptation" (https://arxiv.org/abs/2402.09353). quantize_base (bool): Whether to quantize base model weights Returns: TransformerDecoder: Instantiation of Gemma2 27B model with LoRA applied """ return lora_gemma2( lora_attn_modules=lora_attn_modules, apply_lora_to_mlp=apply_lora_to_mlp, vocab_size=256_000, num_layers=46, num_heads=32, head_dim=128, num_kv_heads=16, embed_dim=4608, intermediate_dim=36864, max_seq_len=8192, attn_dropout=0.0, norm_eps=1e-6, hidden_capping_value=30.0, final_capping_value=50.0, sliding_window_size=4096, query_pre_attn_scalar=144, lora_rank=lora_rank, lora_alpha=lora_alpha, lora_dropout=lora_dropout, use_dora=use_dora, quantize_base=quantize_base, )
qlora_gemma2_27b = partial(lora_gemma2_27b, quantize_base=True) qlora_gemma2_27b.__doc__ = """ Builder for creating a Gemma model with QLoRA enabled. Base model weights in linear layers that LoRA is applied to are quantized per the QLoRA paper: https://arxiv.org/abs/2305.14314. Please see `lora_gemma2_27b` for full API arguments. """

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources