.. _dataset_tutorial_label: ==================================== Configuring Datasets for Fine-Tuning ==================================== This tutorial will guide you through how to set up a dataset to fine-tune on. .. grid:: 2 .. grid-item-card:: :octicon:`mortar-board;1em;` What you will learn * How to quickly get started with built-in datasets * How to use any dataset from Hugging Face Hub * How to use instruct, chat, or text completion datasets * How to configure datasets from code, config, or command-line * How to fully customize your own dataset .. grid-item-card:: :octicon:`list-unordered;1em;` Prerequisites * Know how to :ref:`configure components from the config<config_tutorial_label>` Datasets are a core component of fine-tuning workflows that serve as a "steering wheel" to guide LLM generation for a particular use case. Many publicly shared open-source datasets have become popular for fine-tuning LLMs and serve as a great starting point to train your model. torchtune gives you the tools to download external community datasets, load in custom local datasets, or create your own datasets. Built-in datasets ----------------- To use one of the built-in datasets in the library, simply import and call the dataset builder function. You can see a list of all supported datasets :ref:`here<datasets>`. .. code-block:: python from torchtune.datasets import alpaca_dataset # Load in tokenizer tokenizer = ... dataset = alpaca_dataset(tokenizer) .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.alpaca_dataset .. code-block:: bash # Command line tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset=torchtune.datasets.alpaca_dataset Hugging Face datasets --------------------- We provide first class support for datasets on the Hugging Face hub. Under the hood, all of our built-in datasets and dataset builders are using Hugging Face's ``load_dataset()`` to load in your data, whether local or on the hub. You can pass in a Hugging Face dataset path to the ``source`` parameter in any of our builders to specify which dataset on the hub to download. Additionally, all builders accept any keyword-arguments that ``load_dataset()`` supports. You can see a full list on Hugging Face's `documentation. <https://huggingface.co/docs/datasets/en/loading>`_ .. code-block:: python from torchtune.datasets import text_completion_dataset # Load in tokenizer tokenizer = ... dataset = text_completion_dataset( tokenizer, source="allenai/c4", # Keyword-arguments that are passed into load_dataset split="train", data_dir="realnewslike", ) .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.text_completion_dataset source: allenai/c4 split: train data_dir: realnewslike .. code-block:: bash # Command line tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset=torchtune.datasets.text_completion_dataset dataset.source=allenai/c4 \ dataset.split=train dataset.data_dir=realnewslike Setting max sequence length --------------------------- The default collator :func:`~torchtune.utils.collate.padded_collate` used in all our training recipes will pad samples to the max sequence length within the batch, not globally. If you wish to set an upper limit on the max sequence length globally, you can specify it in the dataset builder with ``max_seq_len``. Any sample in the dataset that is longer than ``max_seq_len`` will be truncated in :func:`~torchtune.data.truncate`. The tokenizer's EOS ids are ensured to be the last token, except in :class:`~torchtune.datasets.TextCompletionDataset`. Generally, you want the max sequence length returned in each data sample to match the context window size of your model. You can also decrease this value to reduce memory usage depending on your hardware constraints. .. code-block:: python from torchtune.datasets import alpaca_dataset # Load in tokenizer tokenizer = ... dataset = alpaca_dataset( tokenizer=tokenizer, max_seq_len=4096, ) .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.alpaca_dataset max_seq_len: 4096 .. code-block:: bash # Command line tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset.max_seq_len=4096 Sample packing -------------- You can use sample packing with any of the single dataset builders by passing in :code:`packed=True`. This requires some pre-processing of the dataset which may slow down time-to-first-batch, but can introduce significant training speedups depending on the dataset. .. code-block:: python from torchtune.datasets import alpaca_dataset, PackedDataset # Load in tokenizer tokenizer = ... dataset = alpaca_dataset( tokenizer=tokenizer, packed=True, ) print(isinstance(dataset, PackedDataset)) # True .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.alpaca_dataset packed: True .. code-block:: bash # Command line tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset.packed=True Custom unstructured text corpus ------------------------------- For continued pre-training, typically a similar data setup to pre-training is used for a simple text completion task. This means no instruct templates, chat formats, and minimal special tokens (only BOS and EOS). To specify an unstructured text corpus, you can use the :func:`~torchtune.datasets.text_completion_dataset` builder with a Hugging Face dataset or a custom local corpus. Here is how to specify it for local files: .. code-block:: python from torchtune.datasets import text_completion_dataset # Load in tokenizer tokenizer = ... dataset = text_completion_dataset( tokenizer, source="text", data_files="path/to/my_data.txt", split="train", ) .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.text_completion_dataset source: text data_files: path/to/my_data.txt split: train .. code-block:: bash # Command line tune run --nproc_per_node 4 full_finetune_distributed --config llama3/8B_full \ dataset=torchtune.datasets.text_completion_dataset dataset.source=text \ dataset.data_files=path/to/my_data.txt dataset.split=train Custom instruct dataset and instruct templates ---------------------------------------------- If you have a custom instruct dataset that's not already provided in the library, you can use the :func:`~torchtune.datasets.instruct_dataset` builder and specify the source path. Instruct datasets typically have multiple columns with text that are formatted into a prompt template. To fine-tune an LLM on a particular task, a common approach is to create a fixed instruct template that guides the model to generate output with a specific goal. Instruct templates are simply flavor text that structures your inputs for the model. It is model agnostic and is tokenized normally just like any other text, but it can help condition the model to respond better to an expected format. For example, the :class:`~torchtune.data.AlpacaInstructTemplate` structures the data in the following way: .. code-block:: python "Below is an instruction that describes a task, paired with an input that provides further context. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:\n" Here is an example of a sample that is formatted with :class:`~torchtune.data.AlpacaInstructTemplate`: .. code-block:: python from torchtune.data import AlpacaInstructTemplate sample = { "instruction": "Classify the following into animals, plants, and minerals", "input": "Oak tree, copper ore, elephant", } prompt = AlpacaInstructTemplate.format(sample) print(prompt) # Below is an instruction that describes a task, paired with an input that provides further context. # Write a response that appropriately completes the request. # # ### Instruction: # Classify the following into animals, plants, and minerals # # ### Input: # Oak tree, copper ore, elephant # # ### Response: # We provide `other instruct templates <data>` for common tasks such summarization and grammar correction. If you need to create your own instruct template for a custom task, you can inherit from :class:`~torchtune.data.InstructTemplate` and create your own class. .. code-block:: python from torchtune.datasets import instruct_dataset from torchtune.data import InstructTemplate class CustomTemplate(InstructTemplate): # Define the template as string with {} as placeholders for data columns template = ... # Implement this method @classmethod def format( cls, sample: Mapping[str, Any], column_map: Optional[Dict[str, str]] = None ) -> str: ... # Load in tokenizer tokenizer = ... dataset = instruct_dataset( tokenizer=tokenizer, source="my/dataset/path", template="import.path.to.CustomTemplate", ) .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.instruct_dataset source: my/dataset/path template: import.path.to.CustomTemplate .. code-block:: bash # Command line tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset=torchtune.datasets.instruct_dataset dataset.source=my/dataset/path \ dataset.template=import.path.to.CustomTemplate Custom chat dataset and chat formats ------------------------------------ If you have a custom chat/conversational dataset that's not already provided in the library, you can use the :func:`~torchtune.datasets.chat_dataset` builder and specify the source path. Chat datasets typically have a single column with multiple back and forth messages between the user and assistant. Chat formats are similar to instruct templates, except that they format system, user, and assistant messages into a list of messages (see :class:`~torchtune.data.ChatFormat`) for a conversational dataset. These can be configured quite similarly to instruct datasets. Here is how messages would be formatted using the :class:`~torchtune.data.Llama2ChatFormat`: .. code-block:: python from torchtune.data import Llama2ChatFormat, Message messages = [ Message( role="system", content="You are a helpful, respectful, and honest assistant.", ), Message( role="user", content="I am going to Paris, what should I see?", ), Message( role="assistant", content="Paris, the capital of France, is known for its stunning architecture..." ), ] formatted_messages = Llama2ChatFormat.format(messages) print(formatted_messages) # [ # Message( # role="user", # content="[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant.\n<</SYS>>\n\n" # "I am going to Paris, what should I see? [/INST] ", # ), # Message( # role="assistant", # content="Paris, the capital of France, is known for its stunning architecture..." # ), # ] Note that the system message is now incorporated in the user message. If you create custom ChatFormats you can also add more advanced behavior. .. code-block:: python from torchtune.datasets import chat_dataset from torchtune.data import ChatFormat class CustomChatFormat(ChatFormat): # Define templates for system, user, assistant messages # as strings with {} as placeholders for message content system = ... user = ... assistant = ... # Implement this method @classmethod def format( cls, sample: List[Message], ) -> List[Message]: ... # Load in tokenizer tokenizer = ... dataset = chat_dataset( tokenizer=tokenizer, source="my/dataset/path", split="train", conversation_style="openai", chat_format="import.path.to.CustomChatFormat", ) .. code-block:: yaml # YAML config dataset: _component_: torchtune.datasets.chat_dataset source: my/dataset/path conversation_style: openai chat_format: import.path.to.CustomChatFormat .. code-block:: bash # Command line tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset=torchtune.datasets.chat_dataset dataset.source=my/dataset/path \ dataset.conversation_style=openai dataset.chat_format=import.path.to.CustomChatFormat Multiple in-memory datasets --------------------------- It is also possible to train on multiple datasets and configure them individually using our :class:`~torchtune.datasets.ConcatDataset` interface. You can even mix instruct and chat datasets or other custom datasets. .. code-block:: yaml # YAML config dataset: - _component_: torchtune.datasets.instruct_dataset source: vicgalle/alpaca-gpt4 template: torchtune.data.AlpacaInstructTemplate split: train train_on_input: True - _component_: torchtune.datasets.instruct_dataset source: samsum template: torchtune.data.SummarizeTemplate column_map: output: summary split: train train_on_input: False - _component_: torchtune.datasets.chat_dataset ... Local and remote datasets ------------------------- To use a dataset saved on your local hard drive, simply specify the file type for ``source`` and pass in the ``data_files`` argument using any of the dataset builder functions. We support all `file types <https://huggingface.co/docs/datasets/en/loading#local-and-remote-files>`_ supported by Hugging Face's ``load_dataset``, including csv, json, txt, and more. .. code-block:: python from torchtune.datasets import instruct_dataset # Load in tokenizer tokenizer = ... # Local files dataset = instruct_dataset( tokenizer=tokenizer, source="csv", split="train", template="import.path.to.CustomTemplate" data_files="path/to/my/data.csv", ) # Remote files dataset = instruct_dataset( tokenizer=tokenizer, source="json", split="train", template="import.path.to.CustomTemplate" data_files="https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json", # You can also pass in any kwarg that load_dataset accepts field="data", ) .. code-block:: yaml # YAML config - local files dataset: _component_: torchtune.datasets.instruct_dataset source: csv template: import.path.to.CustomTemplate data_files: path/to/my/data.csv # YAML config - remote files dataset: _component_: torchtune.datasets.instruct_dataset source: json template: import.path.to.CustomTemplate data_files: https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json field: data .. code-block:: bash # Command line - local files tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset=torchtune.datasets.chat_dataset dataset.source=csv \ dataset.template=import.path.to.CustomTemplate dataset.data_files=path/to/my/data.csv Fully customized datasets ------------------------- More advanced tasks and dataset formats that don't fit into the templating and processing that :class:`~torchtune.datasets.InstructDataset`, :class:`~torchtune.datasets.ChatDataset`, and :class:`~torchtune.datasets.TextCompletionDataset` provide may require you to create your own dataset class for more flexibility. Let's walk through the :class:`~torchtune.datasets.PreferenceDataset`, which has custom functionality for RLHF preference data, as an example to understand what you'll need to do. If you take a look at the code for the :class:`~torchtune.datasets.PreferenceDataset` class, you'll notice it's quite similar to :class:`~torchtune.datasets.InstructDataset` with a few adjustments for chosen and rejected samples in preference data. .. code-block:: python chosen_message = [ Message(role="user", content=prompt, masked=True), Message(role="assistant", content=transformed_sample[key_chosen]), ] rejected_message = [ Message(role="user", content=prompt, masked=True), Message(role="assistant", content=transformed_sample[key_rejected]), ] chosen_input_ids, c_masks = self._tokenizer.tokenize_messages( chosen_message, self.max_seq_len ) chosen_labels = list( np.where(c_masks, CROSS_ENTROPY_IGNORE_IDX, chosen_input_ids) ) rejected_input_ids, r_masks = self._tokenizer.tokenize_messages( rejected_message, self.max_seq_len ) rejected_labels = list( np.where(r_masks, CROSS_ENTROPY_IGNORE_IDX, rejected_input_ids) ) For a specific dataset that's easy to customize from the config, you can create a builder function. This is the builder function for the :func:`~torchtune.datasets.stack_exchanged_paired_dataset`, which creates a :class:`~torchtune.datasets.PreferenceDataset` configured to use a paired dataset from Hugging Face. Notice that we've also had to add a custom instruct template as well. .. code-block:: python def stack_exchanged_paired_dataset( tokenizer: ModelTokenizer, max_seq_len: int = 1024, ) -> PreferenceDataset: return PreferenceDataset( tokenizer=tokenizer, source="lvwerra/stack-exchange-paired", template=StackExchangedPairedTemplate(), column_map={ "prompt": "question", "chosen": "response_j", "rejected": "response_k", }, max_seq_len=max_seq_len, split="train", data_dir="data/rl", ) Now we can easily specify our custom dataset from the config, or from command-line. .. code-block:: yaml # This is how you would configure the Alpaca dataset using the builder dataset: _component_: torchtune.datasets.stack_exchanged_paired_dataset max_seq_len: 512 .. code-block:: bash # Command line - local files tune run full_finetune_single_device --config llama3/8B_full_single_device \ dataset=torchtune.datasets.stack_exchanged_paired_dataset dataset.max_seq_len=512