Source code for ignite.contrib.metrics.regression.mean_error

import torch

from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.exceptions import NotComputableError

[docs]class MeanError(_BaseRegression): r""" Calculates the Mean Error: :math:`\text{ME} = \frac{1}{n}\sum_{j=1}^n (A_j - P_j)`, where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in the reference `Botchkarev 2018`__. - `update` must receive output of the form `(y_pred, y)` or `{'y_pred': y_pred, 'y': y}`. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ """ def reset(self): self._sum_of_errors = 0.0 self._num_examples = 0 def _update(self, output): y_pred, y = output errors = y.view_as(y_pred) - y_pred self._sum_of_errors += torch.sum(errors).item() self._num_examples += y.shape[0] def compute(self): if self._num_examples == 0: raise NotComputableError("MeanError must have at least one example before it can be computed.") return self._sum_of_errors / self._num_examples

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 07/17/2024, 10:10:30 AM.

Built with Sphinx using a theme provided by Read the Docs.