Source code for ignite.metrics.psnr
from typing import Callable, Sequence, Union
import torch
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce
__all__ = ["PSNR"]
[docs]class PSNR(Metric):
r"""Computes average `Peak signal-to-noise ratio (PSNR) <https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio>`_.
.. math::
\text{PSNR}(I, J) = 10 * \log_{10}\left(\frac{ MAX_{I}^2 }{ \text{ MSE } }\right)
where :math:`\text{MSE}` is `mean squared error <https://en.wikipedia.org/wiki/Mean_squared_error>`_.
- `y_pred` and `y` **must** have (batch_size, ...) shape.
- `y_pred` and `y` **must** have same dtype and same shape.
Args:
data_range: The data range of the target image (distance between minimum
and maximum possible values).
For other data types, please set the data range, otherwise an exception will be raised.
output_transform: A callable that is used to transform the Engine’s
process_function’s output into the form expected by the metric.
device: specifies which device updates are accumulated on.
Setting the metric’s device to be the same as your update arguments ensures
the update method is non-blocking. By default, CPU.
Examples:
To use with ``Engine`` and ``process_function``, simply attach the metric instance to the engine.
The output of the engine's ``process_function`` needs to be in format of
``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y, ...}``.
.. testcode::
psnr = PSNR(data_range=1.0)
psnr.attach(default_evaluator, 'psnr')
preds = torch.rand([4, 3, 16, 16])
target = preds * 0.75
state = default_evaluator.run([[preds, target]])
print(state.metrics['psnr'])
.. testoutput::
16.8671405...
This metric by default accepts Grayscale or RGB images. But if you have YCbCr or YUV images, only
Y channel is needed for computing PSNR. And, this can be done with ``output_transform``. For instance,
.. testcode::
def get_y_channel(output):
y_pred, y = output
# y_pred and y are (B, 3, H, W) and YCbCr or YUV images
# let's select y channel
return y_pred[:, 0, ...], y[:, 0, ...]
psnr = PSNR(data_range=219, output_transform=get_y_channel)
psnr.attach(default_evaluator, 'psnr')
preds = 219 * torch.rand([4, 3, 16, 16])
target = preds * 0.75
state = default_evaluator.run([[preds, target]])
print(state.metrics['psnr'])
.. testoutput::
16.7027966...
.. versionadded:: 0.4.3
"""
def __init__(
self,
data_range: Union[int, float],
output_transform: Callable = lambda x: x,
device: Union[str, torch.device] = torch.device("cpu"),
):
super().__init__(output_transform=output_transform, device=device)
self.data_range = data_range
def _check_shape_dtype(self, output: Sequence[torch.Tensor]) -> None:
y_pred, y = output
if y_pred.dtype != y.dtype:
raise TypeError(
f"Expected y_pred and y to have the same data type. Got y_pred: {y_pred.dtype} and y: {y.dtype}."
)
if y_pred.shape != y.shape:
raise ValueError(
f"Expected y_pred and y to have the same shape. Got y_pred: {y_pred.shape} and y: {y.shape}."
)
[docs] @reinit__is_reduced
def reset(self) -> None:
self._sum_of_batchwise_psnr = torch.tensor(0.0, dtype=torch.float64, device=self._device)
self._num_examples = 0
[docs] @reinit__is_reduced
def update(self, output: Sequence[torch.Tensor]) -> None:
self._check_shape_dtype(output)
y_pred, y = output[0].detach(), output[1].detach()
dim = tuple(range(1, y.ndim))
mse_error = torch.pow(y_pred.double() - y.view_as(y_pred).double(), 2).mean(dim=dim)
self._sum_of_batchwise_psnr += torch.sum(10.0 * torch.log10(self.data_range ** 2 / (mse_error + 1e-10))).to(
device=self._device
)
self._num_examples += y.shape[0]
[docs] @sync_all_reduce("_sum_of_batchwise_psnr", "_num_examples")
def compute(self) -> torch.Tensor:
if self._num_examples == 0:
raise NotComputableError("PSNR must have at least one example before it can be computed.")
return self._sum_of_batchwise_psnr / self._num_examples