Examples
========

We provide several examples using `ignite` to display how it helps to write compact and full-featured training loops in several lines of code:

MNIST example
-------------

Basic neural network training on MNIST dataset with/without :mod:`ignite.contrib` module:

- `MNIST with ignite.contrib TQDM/Tensorboard/Visdom loggers <https://github.com/pytorch/ignite/tree/master/examples/contrib/mnist>`_
- `MNIST with native TQDM/Tensorboard/Visdom logging <https://github.com/pytorch/ignite/tree/master/examples/mnist>`_

These examples are ported from `pytorch/examples <https://github.com/pytorch/examples>`_.

Distributed examples
--------------------

Training a ResNet on CIFAR10 in various configurations:

    1) single gpu
    2) single node multiple gpus
    3) multiple nodes and multiple gpus
    4) single or multiple TPUs

- `CIFAR10 <https://github.com/pytorch/ignite/tree/master/examples/contrib/cifar10>`_ - This example displays usage of :doc:`distributed` helper module.


Other examples
--------------

- `DCGAN <https://github.com/pytorch/ignite/tree/master/examples/gan>`_ - plain Deep Convolution Generative Adversarial Networks training
- `Reinforcement Learning <https://github.com/pytorch/ignite/tree/master/examples/reinforcement_learning>`_ - Actor/Critic and Reinforce methods on Cart-Pole task
- `Fast Neural Style <https://github.com/pytorch/ignite/tree/master/examples/fast_neural_style>`_ - Artistic style transfer implementation.

These examples are ported from `pytorch/examples <https://github.com/pytorch/examples>`_.

Notebooks
---------

- `Text Classification using Convolutional Neural Networks <https://github.com/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb>`_

- `Variational Auto Encoders <https://github.com/pytorch/ignite/blob/master/examples/notebooks/VAE.ipynb>`_

- `Training Cycle-GAN on Horses to Zebras with Nvidia/Apex <https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb>`_
- `Another training Cycle-GAN on Horses to Zebras with Native Torch CUDA AMP <https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb>`_

- `Finetuning EfficientNet-B0 on CIFAR100 <https://github.com/pytorch/ignite/blob/master/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb>`_

- `Convolutional Neural Networks for Classifying Fashion-MNIST Dataset <https://github.com/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb>`_

- `Hyperparameters tuning with Ax <https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb>`_

- `Basic example of LR finder on MNIST <https://github.com/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb>`_

- `Benchmark mixed precision training on Cifar100: torch.cuda.amp vs nvidia/apex <https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb>`_

- `MNIST training on a single TPU <https://github.com/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb>`_


All notebooks can be opened on Google Colab with a link:

.. code-block:: text

    https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/<notebook-name>


Reproducible trainings
----------------------

Inspired by `torchvision/references <https://github.com/pytorch/vision/tree/master/references>`_, we provide several
reproducible baselines for vision tasks:

- `ImageNet <https://github.com/pytorch/ignite/blob/master/examples/references/classification/imagenet>`_
- `Pascal VOC2012 <https://github.com/pytorch/ignite/blob/master/examples/references/segmentation/pascal_voc2012>`_

Features:

- Distributed training with mixed precision by `nvidia/apex <https://github.com/NVIDIA/apex/>`_
- Experiments tracking with `MLflow <https://mlflow.org/>`_ or `Polyaxon <https://polyaxon.com/>`_ or `ClearML <https://github.com/allegroai/clearml/>`_