Examples ======== We provide several examples using `ignite` to display how it helps to write compact and full-featured training loops in several lines of code: MNIST example ------------- Basic neural network training on MNIST dataset with/without :mod:`ignite.contrib` module: - `MNIST with ignite.contrib TQDM/Tensorboard/Visdom loggers <https://github.com/pytorch/ignite/tree/master/examples/contrib/mnist>`_ - `MNIST with native TQDM/Tensorboard/Visdom logging <https://github.com/pytorch/ignite/tree/master/examples/mnist>`_ These examples are ported from `pytorch/examples <https://github.com/pytorch/examples>`_. Distributed examples -------------------- Training a ResNet on CIFAR10 in various configurations: 1) single gpu 2) single node multiple gpus 3) multiple nodes and multiple gpus 4) single or multiple TPUs - `CIFAR10 <https://github.com/pytorch/ignite/tree/master/examples/contrib/cifar10>`_ - This example displays usage of :doc:`distributed` helper module. Other examples -------------- - `DCGAN <https://github.com/pytorch/ignite/tree/master/examples/gan>`_ - plain Deep Convolution Generative Adversarial Networks training - `Reinforcement Learning <https://github.com/pytorch/ignite/tree/master/examples/reinforcement_learning>`_ - Actor/Critic and Reinforce methods on Cart-Pole task - `Fast Neural Style <https://github.com/pytorch/ignite/tree/master/examples/fast_neural_style>`_ - Artistic style transfer implementation. These examples are ported from `pytorch/examples <https://github.com/pytorch/examples>`_. Notebooks --------- - `Text Classification using Convolutional Neural Networks <https://github.com/pytorch/ignite/blob/master/examples/notebooks/TextCNN.ipynb>`_ - `Variational Auto Encoders <https://github.com/pytorch/ignite/blob/master/examples/notebooks/VAE.ipynb>`_ - `Training Cycle-GAN on Horses to Zebras with Nvidia/Apex <https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_nvidia_apex.ipynb>`_ - `Another training Cycle-GAN on Horses to Zebras with Native Torch CUDA AMP <https://github.com/pytorch/ignite/blob/master/examples/notebooks/CycleGAN_with_torch_cuda_amp.ipynb>`_ - `Finetuning EfficientNet-B0 on CIFAR100 <https://github.com/pytorch/ignite/blob/master/examples/notebooks/EfficientNet_Cifar100_finetuning.ipynb>`_ - `Convolutional Neural Networks for Classifying Fashion-MNIST Dataset <https://github.com/pytorch/ignite/blob/master/examples/notebooks/FashionMNIST.ipynb>`_ - `Hyperparameters tuning with Ax <https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar10_Ax_hyperparam_tuning.ipynb>`_ - `Basic example of LR finder on MNIST <https://github.com/pytorch/ignite/blob/master/examples/notebooks/FastaiLRFinder_MNIST.ipynb>`_ - `Benchmark mixed precision training on Cifar100: torch.cuda.amp vs nvidia/apex <https://github.com/pytorch/ignite/blob/master/examples/notebooks/Cifar100_bench_amp.ipynb>`_ - `MNIST training on a single TPU <https://github.com/pytorch/ignite/blob/master/examples/notebooks/MNIST_on_TPU.ipynb>`_ All notebooks can be opened on Google Colab with a link: .. code-block:: text https://colab.research.google.com/github/pytorch/ignite/blob/master/examples/notebooks/<notebook-name> Reproducible trainings ---------------------- Inspired by `torchvision/references <https://github.com/pytorch/vision/tree/master/references>`_, we provide several reproducible baselines for vision tasks: - `ImageNet <https://github.com/pytorch/ignite/blob/master/examples/references/classification/imagenet>`_ - `Pascal VOC2012 <https://github.com/pytorch/ignite/blob/master/examples/references/segmentation/pascal_voc2012>`_ Features: - Distributed training with mixed precision by `nvidia/apex <https://github.com/NVIDIA/apex/>`_ - Experiments tracking with `MLflow <https://mlflow.org/>`_ or `Polyaxon <https://polyaxon.com/>`_ or `ClearML <https://github.com/allegroai/clearml/>`_