Shortcuts

Source code for ignite.contrib.metrics.regression.fractional_bias

import torch

from ignite.contrib.metrics.regression._base import _BaseRegression
from ignite.exceptions import NotComputableError


[docs]class FractionalBias(_BaseRegression): r""" Calculates the Fractional Bias: :math:`\text{FB} = \frac{1}{n}\sum_{j=1}^n\frac{2 (A_j - P_j)}{A_j + P_j}`, where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - ``update`` must receive output of the form ``(y_pred, y)`` or ``{'y_pred': y_pred, 'y': y}``. - `y` and `y_pred` must be of same shape `(N, )` or `(N, 1)`. __ https://arxiv.org/abs/1809.03006 """ def reset(self): self._sum_of_errors = 0.0 self._num_examples = 0 def _update(self, output): y_pred, y = output errors = 2 * (y.view_as(y_pred) - y_pred) / (y_pred + y.view_as(y_pred)) self._sum_of_errors += torch.sum(errors).item() self._num_examples += y.shape[0] def compute(self): if self._num_examples == 0: raise NotComputableError("FractionalBias must have at least one example before it can be computed.") return self._sum_of_errors / self._num_examples

© Copyright 2024, PyTorch-Ignite Contributors. Last updated on 10/02/2024, 2:49:26 PM.

Built with Sphinx using a theme provided by Read the Docs.