Shortcuts

Source code for ignite.metrics.top_k_categorical_accuracy

from __future__ import division

import torch

from ignite.metrics.metric import Metric
from ignite.exceptions import NotComputableError


[docs]class TopKCategoricalAccuracy(Metric): """ Calculates the top-k categorical accuracy. - `update` must receive output of the form `(y_pred, y)`. """ def __init__(self, k=5, output_transform=lambda x: x): super(TopKCategoricalAccuracy, self).__init__(output_transform) self._k = k def reset(self): self._num_correct = 0 self._num_examples = 0 def update(self, output): y_pred, y = output sorted_indices = torch.topk(y_pred, self._k, dim=1)[1] expanded_y = y.view(-1, 1).expand(-1, self._k) correct = torch.sum(torch.eq(sorted_indices, expanded_y), dim=1) self._num_correct += torch.sum(correct).item() self._num_examples += correct.shape[0] def compute(self): if self._num_examples == 0: raise NotComputableError("TopKCategoricalAccuracy must have at" "least one example before it can be computed.") return self._num_correct / self._num_examples

© Copyright 2022, PyTorch-Ignite Contributors. Last updated on 08/17/2022, 4:22:51 PM.

Built with Sphinx using a theme provided by Read the Docs.