Source code for ignite.metrics.running_average
from ignite.metrics import Metric
from ignite.engine import Events
[docs]class RunningAverage(Metric):
"""Compute running average of a metric or the output of process function.
Args:
src (Metric or None): input source: an instance of :class:`~ignite.metrics.Metric` or None. The latter
corresponds to `engine.state.output` which holds the output of process function.
alpha (float, optional): running average decay factor, default 0.98
output_transform (callable, optional): a function to use to transform the output if `src` is None and
corresponds the output of process function. Otherwise it should be None.
Examples:
.. code-block:: python
alpha = 0.98
acc_metric = RunningAverage(Accuracy(output_transform=lambda x: [x[1], x[2]]), alpha=alpha)
acc_metric.attach(trainer, 'running_avg_accuracy')
avg_output = RunningAverage(output_transform=lambda x: x[0], alpha=alpha)
avg_output.attach(trainer, 'running_avg_loss')
@trainer.on(Events.ITERATION_COMPLETED)
def log_running_avg_metrics(engine):
print("running avg accuracy:", engine.state.metrics['running_avg_accuracy'])
print("running avg loss:", engine.state.metrics['running_avg_loss'])
"""
def __init__(self, src=None, alpha=0.98, output_transform=None):
if not (isinstance(src, Metric) or src is None):
raise TypeError("Argument src should be a Metric or None.")
if not (0.0 < alpha <= 1.0):
raise ValueError("Argument alpha should be a float between 0.0 and 1.0.")
if isinstance(src, Metric):
if output_transform is not None:
raise ValueError("Argument output_transform should be None if src is a Metric.")
self.src = src
self._get_src_value = self._get_metric_value
self.iteration_completed = self._metric_iteration_completed
else:
if output_transform is None:
raise ValueError("Argument output_transform should not be None if src corresponds "
"to the output of process function.")
self._get_src_value = self._get_output_value
self.update = self._output_update
self.alpha = alpha
super(RunningAverage, self).__init__(output_transform=output_transform)
def reset(self):
self._value = None
def update(self, output):
# Implement abstract method
pass
def compute(self):
if self._value is None:
self._value = self._get_src_value()
else:
self._value = self._value * self.alpha + (1.0 - self.alpha) * self._get_src_value()
return self._value
def attach(self, engine, name):
# restart average every epoch
engine.add_event_handler(Events.EPOCH_STARTED, self.started)
# compute metric
engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed)
# apply running average
engine.add_event_handler(Events.ITERATION_COMPLETED, self.completed, name)
def _get_metric_value(self):
return self.src.compute()
def _get_output_value(self):
return self.src
def _metric_iteration_completed(self, engine):
self.src.started(engine)
self.src.iteration_completed(engine)
def _output_update(self, output):
self.src = output