Source code for ignite.metrics.mean_absolute_error
from __future__ import division
import torch
from ignite.exceptions import NotComputableError
from ignite.metrics.metric import Metric
[docs]class MeanAbsoluteError(Metric):
"""
Calculates the mean absolute error.
- `update` must receive output of the form `(y_pred, y)`.
"""
def reset(self):
self._sum_of_absolute_errors = 0.0
self._num_examples = 0
def update(self, output):
y_pred, y = output
absolute_errors = torch.abs(y_pred - y.view_as(y_pred))
self._sum_of_absolute_errors += torch.sum(absolute_errors).item()
self._num_examples += y.shape[0]
def compute(self):
if self._num_examples == 0:
raise NotComputableError('MeanAbsoluteError must have at least one example before it can be computed.')
return self._sum_of_absolute_errors / self._num_examples