Source code for ignite.contrib.metrics.regression.maximum_absolute_error

from ignite.metrics import Metric
from ignite.exceptions import NotComputableError
import torch

[docs]class MaximumAbsoluteError(Metric): r""" Calculates the Maximum Absolute Error: :math:`\text{MaxAE} = \max_{j=1,n} \left( \lvert A_j-P_j \rvert \right)`, where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value. More details can be found in `Botchkarev 2018`__. - `update` must receive output of the form `(y_pred, y)`. - `y` and `y_pred` must be of same shape. __ """
[docs] def reset(self): self._max_of_absolute_errors = -1
[docs] def update(self, output): y_pred, y = output mae = torch.abs(y_pred - y.view_as(y_pred)).max().item() if self._max_of_absolute_errors < mae: self._max_of_absolute_errors = mae
[docs] def compute(self): if self._max_of_absolute_errors < 0: raise NotComputableError('MaximumAbsoluteError must have at least one example before it can be computed') return self._max_of_absolute_errors

© Copyright 2022, PyTorch-Ignite Contributors. Last updated on 05/04/2022, 8:31:16 PM.

Built with Sphinx using a theme provided by Read the Docs.