Source code for ignite.contrib.metrics.regression.maximum_absolute_error
from ignite.metrics import Metric
from ignite.exceptions import NotComputableError
import torch
[docs]class MaximumAbsoluteError(Metric):
r"""
Calculates the Maximum Absolute Error:
:math:`\text{MaxAE} = \max_{j=1,n} \left( \lvert A_j-P_j \rvert \right)`,
where :math:`A_j` is the ground truth and :math:`P_j` is the predicted value.
More details can be found in `Botchkarev 2018`__.
- `update` must receive output of the form `(y_pred, y)`.
- `y` and `y_pred` must be of same shape.
__ https://arxiv.org/abs/1809.03006
"""
[docs] def reset(self):
self._max_of_absolute_errors = -1
[docs] def update(self, output):
y_pred, y = output
mae = torch.abs(y_pred - y.view_as(y_pred)).max().item()
if self._max_of_absolute_errors < mae:
self._max_of_absolute_errors = mae
[docs] def compute(self):
if self._max_of_absolute_errors < 0:
raise NotComputableError('MaximumAbsoluteError must have at least one example before it can be computed')
return self._max_of_absolute_errors