Shortcuts

functorch.make_functional_with_buffers

functorch.make_functional_with_buffers(model, disable_autograd_tracking=False)func, params, buffers[source]

Given a torch.nn.Module, make_functional_with_buffers extracts the state (params and buffers) and returns a functional version of the model func that can be invoked like a function.

func can be invoked as follows:

import torch
import torch.nn as nn
from functorch import make_functional_with_buffers

x = torch.randn(4, 3)
model = nn.Linear(3, 3)
func, params, buffers = make_functional_with_buffers(model)
func(params, buffers, x)

And here is an example of applying the grad transform over the parameters of a model:

import torch
import torch.nn as nn
from functorch import make_functional_with_buffers, grad

x = torch.randn(4, 3)
t = torch.randn(4, 3)
model = nn.Linear(3, 3)
func, params, buffers = make_functional_with_buffers(model)

def compute_loss(params, buffers, x, t):
    y = func(params, buffers, x)
    return nn.functional.mse_loss(y, t)

grad_weights = grad(compute_loss)(params, buffers, x, t)
Parameters
  • model (torch.nn.Module) – Input model.

  • disable_autograd_tracking (bool) – Flag to disable gradients tracking for output parameters. The returned params are unrelated to the set of params from the original model. If False (default), the params will have requires_grad=True on them (aka they will be trackable with regular PyTorch autograd), matching the requires_grad-ness of the params from the original model. Otherwise, the returned params will have requires_grad=False. Default, False. If you plan on using regular PyTorch autograd (e.g., if you want to call .backward() or torch.autograd.grad(), then set disable_autograd_tracking=False. Otherwise, if you’re only planning on using functorch’s gradient transforms, then please set disable_autograd_tracking=True to avoid unnecessarily tracking history with PyTorch autograd.