functorch.make_functional¶
-
functorch.
make_functional
(model) → func, params[source]¶ Given a
torch.nn.Module
,make_functional()
extracts the state (params) and returns a functional version of the model,func
. This makes it so that it is possible use transforms over the parameters ofmodel
.func
can be invoked as follows:import torch import torch.nn as nn from functorch import make_functional x = torch.randn(4, 3) model = nn.Linear(3, 3) func, params = make_functional(model) func(params, x)
And here is an example of applying the grad transform over the parameters of a model.
import torch import torch.nn as nn from functorch import make_functional, grad x = torch.randn(4, 3) t = torch.randn(4, 3) model = nn.Linear(3, 3) func, params = make_functional(model) def compute_loss(params, x, t): y = func(params, x) return nn.functional.mse_loss(y, t) grad_weights = grad(compute_loss)(params, x, t)
If the model has any buffers, please use
make_functional_with_buffers()
instead.