# Bundled Program -- a Tool for ExecuTorch Model Validation ## Introduction `BundledProgram` is a wrapper around the core ExecuTorch program designed to help users wrapping test cases with the model they deploy. `BundledProgram` is not necessarily a core part of the program and not needed for its execution, but is particularly important for various other use-cases, such as model correctness evaluation, including e2e testing during the model bring-up process. Overall, the procedure can be broken into two stages, and in each stage we are supporting: * **Emit stage**: Bundling the test I/O cases along with the ExecuTorch program, serializing into flatbuffer. * **Runtime stage**: Accessing, executing, and verifying the bundled test cases during runtime. ## Emit stage This stage mainly focuses on the creation of a `BundledProgram` and dumping it out to the disk as a flatbuffer file. The main procedure is as follow: 1. Create a model and emit its ExecuTorch program. 2. Construct a `List[MethodTestSuite]` to record all test cases that needs to be bundled. 3. Generate `BundledProgram` by using the emited model and `List[MethodTestSuite]`. 4. Serialize the `BundledProgram` and dump it out to the disk. ### Step 1: Create a Model and Emit its ExecuTorch Program. ExecuTorch Program can be emitted from user's model by using ExecuTorch APIs. Follow the [Generate Sample ExecuTorch program](./getting-started-setup.md) or [Exporting to ExecuTorch tutorial](./tutorials/export-to-executorch-tutorial). ### Step 2: Construct `List[MethodTestSuite]` to hold test info In `BundledProgram`, we create two new classes, `MethodTestCase` and `MethodTestSuite`, to hold essential info for ExecuTorch program verification. `MethodTestCase` represents a single testcase. Each `MethodTestCase` contains inputs and expected outputs for a single execution. :::{dropdown} `MethodTestCase` ```{eval-rst} .. autofunction:: executorch.sdk.bundled_program.config.MethodTestCase.__init__ :noindex: ``` ::: `MethodTestSuite` contains all testing info for single method, including a str representing method name, and a `List[MethodTestCase]` for all testcases: :::{dropdown} `MethodTestSuite` ```{eval-rst} .. autofunction:: executorch.sdk.bundled_program.config.MethodTestSuite :noindex: ``` ::: Since each model may have multiple inference methods, we need to generate `List[MethodTestSuite]` to hold all essential infos. ### Step 3: Generate `BundledProgram` We provide `BundledProgram` class under `executorch/sdk/bundled_program/core.py` to bundled the `ExecutorchProgram`-like variable, including `ExecutorchProgram`, `MultiMethodExecutorchProgram` or `ExecutorchProgramManager`, with the `List[MethodTestSuite]`: :::{dropdown} `BundledProgram` ```{eval-rst} .. autofunction:: executorch.sdk.bundled_program.core.BundledProgram.__init__ :noindex: ``` ::: Construtor of `BundledProgram `will do sannity check internally to see if the given `List[MethodTestSuite]` matches the given Program's requirements. Specifically: 1. The method_names of each `MethodTestSuite` in `List[MethodTestSuite]` for should be also in program. Please notice that it is no need to set testcases for every method in the Program. 2. The metadata of each testcase should meet the requirement of the coresponding inference methods input. ### Step 4: Serialize `BundledProgram` to Flatbuffer. To serialize `BundledProgram` to make runtime APIs use it, we provide two APIs, both under `executorch/sdk/bundled_program/serialize/__init__.py`. :::{dropdown} Serialize and Deserialize ```{eval-rst} .. currentmodule:: executorch.sdk.bundled_program.serialize .. autofunction:: serialize_from_bundled_program_to_flatbuffer :noindex: ``` ```{eval-rst} .. currentmodule:: executorch.sdk.bundled_program.serialize .. autofunction:: deserialize_from_flatbuffer_to_bundled_program :noindex: ``` ::: ### Emit Example Here is a flow highlighting how to generate a `BundledProgram` given a PyTorch model and the representative inputs we want to test it along with. ```python import torch from executorch.exir import to_edge from executorch.sdk import BundledProgram from executorch.sdk.bundled_program.config import MethodTestCase, MethodTestSuite from executorch.sdk.bundled_program.serialize import ( serialize_from_bundled_program_to_flatbuffer, ) from torch._export import capture_pre_autograd_graph from torch.export import export # Step 1: ExecuTorch Program Export class SampleModel(torch.nn.Module): """An example model with multi-methods. Each method has multiple input and single output""" def __init__(self) -> None: super().__init__() self.a: torch.Tensor = 3 * torch.ones(2, 2, dtype=torch.int32) self.b: torch.Tensor = 2 * torch.ones(2, 2, dtype=torch.int32) def forward(self, x: torch.Tensor, q: torch.Tensor) -> torch.Tensor: z = x.clone() torch.mul(self.a, x, out=z) y = x.clone() torch.add(z, self.b, out=y) torch.add(y, q, out=y) return y # Inference method name of SampleModel we want to bundle testcases to. # Notices that we do not need to bundle testcases for every inference methods. method_name = "forward" model = SampleModel() # Inputs for graph capture. capture_input = ( (torch.rand(2, 2) - 0.5).to(dtype=torch.int32), (torch.rand(2, 2) - 0.5).to(dtype=torch.int32), ) # Export method's FX Graph. method_graph = export( capture_pre_autograd_graph(model, capture_input), capture_input, ) # Emit the traced method into ET Program. et_program = to_edge(method_graph).to_executorch() # Step 2: Construct MethodTestSuite for Each Method # Prepare the Test Inputs. # Number of input sets to be verified n_input = 10 # Input sets to be verified. inputs = [ # Each list below is a individual input set. # The number of inputs, dtype and size of each input follow Program's spec. [ (torch.rand(2, 2) - 0.5).to(dtype=torch.int32), (torch.rand(2, 2) - 0.5).to(dtype=torch.int32), ] for _ in range(n_input) ] # Generate Test Suites method_test_suites = [ MethodTestSuite( method_name=method_name, test_cases=[ MethodTestCase( inputs=input, expected_outputs=(getattr(model, method_name)(*input), ), ) for input in inputs ], ), ] # Step 3: Generate BundledProgram bundled_program = BundledProgram(et_program, method_test_suites) # Step 4: Serialize BundledProgram to flatbuffer. serialized_bundled_program = serialize_from_bundled_program_to_flatbuffer( bundled_program ) save_path = "bundled_program.bpte" with open(save_path, "wb") as f: f.write(serialized_bundled_program) ``` We can also regenerate `BundledProgram` from flatbuffer file if needed: ```python from executorch.sdk.bundled_program.serialize import deserialize_from_flatbuffer_to_bundled_program save_path = "bundled_program.bpte" with open(save_path, "rb") as f: serialized_bundled_program = f.read() regenerate_bundled_program = deserialize_from_flatbuffer_to_bundled_program(serialized_bundled_program) ``` ## Runtime Stage This stage mainly focuses on executing the model with the bundled inputs and and comparing the model's output with the bundled expected output. We provide multiple APIs to handle the key parts of it. ### Get ExecuTorch Program Pointer from `BundledProgram` Buffer We need the pointer to ExecuTorch program to do the execution. To unify the process of loading and executing `BundledProgram` and Program flatbuffer, we create an API: :::{dropdown} `GetProgramData` ```{eval-rst} .. doxygenfunction:: torch::executor::bundled_program::GetProgramData ``` ::: Here's an example of how to use the `GetProgramData` API: ```c++ std::shared_ptr buff_ptr; size_t buff_len; // FILE_PATH here can be either BundledProgram or Program flatbuffer file. Error status = torch::executor::util::read_file_content( FILE_PATH, &buff_ptr, &buff_len); ET_CHECK_MSG( status == Error::Ok, "read_file_content() failed with status 0x%" PRIx32, status); const void* program_ptr; size_t program_len; status = torch::executor::bundled_program::GetProgramData( buff_ptr.get(), buff_len, &program_ptr, &program_len); ET_CHECK_MSG( status == Error::Ok, "GetProgramData() failed with status 0x%" PRIx32, status); ``` ### Load Bundled Input to Method To execute the program on the bundled input, we need to load the bundled input into the method. Here we provided an API called `torch::executor::bundled_program::LoadBundledInput`: :::{dropdown} `LoadBundledInput` ```{eval-rst} .. doxygenfunction:: torch::executor::bundled_program::LoadBundledInput ``` ::: ### Verify the Method's Output. We call `torch::executor::bundled_program::VerifyResultWithBundledExpectedOutput` to verify the method's output with bundled expected outputs. Here's the details of this API: :::{dropdown} `VerifyResultWithBundledExpectedOutput` ```{eval-rst} .. doxygenfunction:: torch::executor::bundled_program::VerifyResultWithBundledExpectedOutput ``` ::: ### Runtime Example Here we provide an example about how to run the bundled program step by step. Most of the code is borrowed from [executor_runner](https://github.com/pytorch/executorch/blob/main/examples/sdk/sdk_example_runner/sdk_example_runner.cpp), and please review that file if you need more info and context: ```c++ // method_name is the name for the method we want to test // memory_manager is the executor::MemoryManager variable for executor memory allocation. // program is the ExecuTorch program. Result method = program->load_method(method_name, &memory_manager); ET_CHECK_MSG( method.ok(), "load_method() failed with status 0x%" PRIx32, method.error()); // Load testset_idx-th input in the buffer to plan status = torch::executor::bundled_program::LoadBundledInput( *method, program_data.bundled_program_data(), FLAGS_testset_idx); ET_CHECK_MSG( status == Error::Ok, "LoadBundledInput failed with status 0x%" PRIx32, status); // Execute the plan status = method->execute(); ET_CHECK_MSG( status == Error::Ok, "method->execute() failed with status 0x%" PRIx32, status); // Verify the result. status = torch::executor::bundled_program::VerifyResultWithBundledExpectedOutput( *method, program_data.bundled_program_data(), FLAGS_testset_idx, FLAGS_rtol, FLAGS_atol); ET_CHECK_MSG( status == Error::Ok, "Bundle verification failed with status 0x%" PRIx32, status); ``` ## Common Errors Errors will be raised if `List[MethodTestSuites]` doesn't match the `Program`. Here're two common situations: ### Test input doesn't match model's requirement. Each inference method of PyTorch model has its own requirement for the inputs, like number of input, the dtype of each input, etc. `BundledProgram` will raise error if test input not meet the requirement. Here's the example of the dtype of test input not meet model's requirement: ```python import torch from executorch.exir import to_edge from executorch.sdk import BundledProgram from executorch.sdk.bundled_program.config import MethodTestCase, MethodTestSuite from torch.export import export class Module(torch.nn.Module): def __init__(self): super().__init__() self.a = 3 * torch.ones(2, 2, dtype=torch.float) self.b = 2 * torch.ones(2, 2, dtype=torch.float) def forward(self, x): out_1 = torch.ones(2, 2, dtype=torch.float) out_2 = torch.ones(2, 2, dtype=torch.float) torch.mul(self.a, x, out=out_1) torch.add(out_1, self.b, out=out_2) return out_2 model = Module() method_names = ["forward"] inputs = (torch.ones(2, 2, dtype=torch.float), ) # Find each method of model needs to be traced my its name, export its FX Graph. method_graph = export( capture_pre_autograd_graph(model, inputs), inputs, ) # Emit the traced methods into ET Program. et_program = to_edge(method_graph).to_executorch() # number of input sets to be verified n_input = 10 # Input sets to be verified for each inference methods. # To simplify, here we create same inputs for all methods. inputs = { # Inference method name corresponding to its test cases. m_name: [ # NOTE: executorch program needs torch.float, but here is torch.int [ torch.randint(-5, 5, (2, 2), dtype=torch.int), ] for _ in range(n_input) ] for m_name in method_names } # Generate Test Suites method_test_suites = [ MethodTestSuite( method_name=m_name, test_cases=[ MethodTestCase( inputs=input, expected_outputs=(getattr(model, m_name)(*input),), ) for input in inputs[m_name] ], ) for m_name in method_names ] # Generate BundledProgram bundled_program = BundledProgram(et_program, method_test_suites) ``` :::{dropdown} Raised Error ``` The input tensor tensor([[-2, 0], [-2, -1]], dtype=torch.int32) dtype shall be torch.float32, but now is torch.int32 --------------------------------------------------------------------------- AssertionError Traceback (most recent call last) Cell In[1], line 72 56 method_test_suites = [ 57 MethodTestSuite( 58 method_name=m_name, (...) 67 for m_name in method_names 68 ] 70 # Step 3: Generate BundledProgram ---> 72 bundled_program = create_bundled_program(program, method_test_suites) File /executorch/sdk/bundled_program/core.py:276, in create_bundled_program(program, method_test_suites) 264 """Create bp_schema.BundledProgram by bundling the given program and method_test_suites together. 265 266 Args: (...) 271 The `BundledProgram` variable contains given ExecuTorch program and test cases. 272 """ 274 method_test_suites = sorted(method_test_suites, key=lambda x: x.method_name) --> 276 assert_valid_bundle(program, method_test_suites) 278 bundled_method_test_suites: List[bp_schema.BundledMethodTestSuite] = [] 280 # Emit data and metadata of bundled tensor File /executorch/sdk/bundled_program/core.py:219, in assert_valid_bundle(program, method_test_suites) 215 # type of tensor input should match execution plan 216 if type(cur_plan_test_inputs[j]) == torch.Tensor: 217 # pyre-fixme[16]: Undefined attribute [16]: Item `bool` of `typing.Union[bool, float, int, torch._tensor.Tensor]` 218 # has no attribute `dtype`. --> 219 assert cur_plan_test_inputs[j].dtype == get_input_dtype( 220 program, program_plan_id, j 221 ), "The input tensor {} dtype shall be {}, but now is {}".format( 222 cur_plan_test_inputs[j], 223 get_input_dtype(program, program_plan_id, j), 224 cur_plan_test_inputs[j].dtype, 225 ) 226 elif type(cur_plan_test_inputs[j]) in ( 227 int, 228 bool, 229 float, 230 ): 231 assert type(cur_plan_test_inputs[j]) == get_input_type( 232 program, program_plan_id, j 233 ), "The input primitive dtype shall be {}, but now is {}".format( 234 get_input_type(program, program_plan_id, j), 235 type(cur_plan_test_inputs[j]), 236 ) AssertionError: The input tensor tensor([[-2, 0], [-2, -1]], dtype=torch.int32) dtype shall be torch.float32, but now is torch.int32 ``` ::: ### Method name in `BundleConfig` does not exist. Another common error would be the method name in any `MethodTestSuite` does not exist in Model. `BundledProgram` will raise error and show the non-exist method name: ```python import torch from executorch.exir import to_edge from executorch.sdk import BundledProgram from executorch.sdk.bundled_program.config import MethodTestCase, MethodTestSuite from torch.export import export class Module(torch.nn.Module): def __init__(self): super().__init__() self.a = 3 * torch.ones(2, 2, dtype=torch.float) self.b = 2 * torch.ones(2, 2, dtype=torch.float) def forward(self, x): out_1 = torch.ones(2, 2, dtype=torch.float) out_2 = torch.ones(2, 2, dtype=torch.float) torch.mul(self.a, x, out=out_1) torch.add(out_1, self.b, out=out_2) return out_2 model = Module() method_names = ["forward"] inputs = (torch.ones(2, 2, dtype=torch.float),) # Find each method of model needs to be traced my its name, export its FX Graph. method_graph = export( capture_pre_autograd_graph(model, inputs), inputs, ) # Emit the traced methods into ET Program. et_program = to_edge(method_graph).to_executorch() # number of input sets to be verified n_input = 10 # Input sets to be verified for each inference methods. # To simplify, here we create same inputs for all methods. inputs = { # Inference method name corresponding to its test cases. m_name: [ [ torch.randint(-5, 5, (2, 2), dtype=torch.float), ] for _ in range(n_input) ] for m_name in method_names } # Generate Test Suites method_test_suites = [ MethodTestSuite( method_name=m_name, test_cases=[ MethodTestCase( inputs=input, expected_outputs=(getattr(model, m_name)(*input),), ) for input in inputs[m_name] ], ) for m_name in method_names ] # NOTE: MISSING_METHOD_NAME is not an inference method in the above model. method_test_suites[0].method_name = "MISSING_METHOD_NAME" # Generate BundledProgram bundled_program = BundledProgram(et_program, method_test_suites) ``` :::{dropdown} Raised Error ``` All method names in bundled config should be found in program.execution_plan, but {'MISSING_METHOD_NAME'} does not include. --------------------------------------------------------------------------- AssertionError Traceback (most recent call last) Cell In[3], line 73 70 method_test_suites[0].method_name = "MISSING_METHOD_NAME" 72 # Generate BundledProgram ---> 73 bundled_program = create_bundled_program(program, method_test_suites) File /executorch/sdk/bundled_program/core.py:276, in create_bundled_program(program, method_test_suites) 264 """Create bp_schema.BundledProgram by bundling the given program and method_test_suites together. 265 266 Args: (...) 271 The `BundledProgram` variable contains given ExecuTorch program and test cases. 272 """ 274 method_test_suites = sorted(method_test_suites, key=lambda x: x.method_name) --> 276 assert_valid_bundle(program, method_test_suites) 278 bundled_method_test_suites: List[bp_schema.BundledMethodTestSuite] = [] 280 # Emit data and metadata of bundled tensor File /executorch/sdk/bundled_program/core.py:141, in assert_valid_bundle(program, method_test_suites) 138 method_name_of_program = {e.name for e in program.execution_plan} 139 method_name_of_test_suites = {t.method_name for t in method_test_suites} --> 141 assert method_name_of_test_suites.issubset( 142 method_name_of_program 143 ), f"All method names in bundled config should be found in program.execution_plan, \ 144 but {str(method_name_of_test_suites - method_name_of_program)} does not include." 146 # check if method_tesdt_suites has been sorted in ascending alphabetical order of method name. 147 for test_suite_id in range(1, len(method_test_suites)): AssertionError: All method names in bundled config should be found in program.execution_plan, but {'MISSING_METHOD_NAME'} does not include. ``` :::