.. role:: hidden :class: hidden-section Automatic Mixed Precision package - torch.amp ============================================= .. Both modules below are missing doc entry. Adding them here for now. .. This does not add anything to the rendered page .. py:module:: torch.cpu.amp .. py:module:: torch.cuda.amp .. automodule:: torch.amp .. currentmodule:: torch.amp :class:`torch.amp` provides convenience methods for mixed precision, where some operations use the ``torch.float32`` (``float``) datatype and other operations use lower precision floating point datatype (``lower_precision_fp``): ``torch.float16`` (``half``) or ``torch.bfloat16``. Some ops, like linear layers and convolutions, are much faster in ``lower_precision_fp``. Other ops, like reductions, often require the dynamic range of ``float32``. Mixed precision tries to match each op to its appropriate datatype. Ordinarily, "automatic mixed precision training" with datatype of ``torch.float16`` uses :class:`torch.autocast` and :class:`torch.cuda.amp.GradScaler` together, as shown in the :ref:`CUDA Automatic Mixed Precision examples` and `CUDA Automatic Mixed Precision recipe `_. However, :class:`torch.autocast` and :class:`torch.cuda.amp.GradScaler` are modular, and may be used separately if desired. As shown in the CPU example section of :class:`torch.autocast`, "automatic mixed precision training/inference" on CPU with datatype of ``torch.bfloat16`` only uses :class:`torch.autocast`. For CUDA and CPU, APIs are also provided separately: * ``torch.autocast("cuda", args...)`` is equivalent to ``torch.cuda.amp.autocast(args...)``. * ``torch.autocast("cpu", args...)`` is equivalent to ``torch.cpu.amp.autocast(args...)``. For CPU, only lower precision floating point datatype of ``torch.bfloat16`` is supported for now. :class:`torch.autocast` and :class:`torch.cpu.amp.autocast` are new in version `1.10`. .. contents:: :local: .. _autocasting: Autocasting ^^^^^^^^^^^ .. currentmodule:: torch .. autoclass:: autocast :members: .. currentmodule:: torch.cuda.amp .. autoclass:: autocast :members: .. autofunction:: custom_fwd .. autofunction:: custom_bwd .. currentmodule:: torch.cpu.amp .. autoclass:: autocast :members: .. _gradient-scaling: Gradient Scaling ^^^^^^^^^^^^^^^^ If the forward pass for a particular op has ``float16`` inputs, the backward pass for that op will produce ``float16`` gradients. Gradient values with small magnitudes may not be representable in ``float16``. These values will flush to zero ("underflow"), so the update for the corresponding parameters will be lost. To prevent underflow, "gradient scaling" multiplies the network's loss(es) by a scale factor and invokes a backward pass on the scaled loss(es). Gradients flowing backward through the network are then scaled by the same factor. In other words, gradient values have a larger magnitude, so they don't flush to zero. Each parameter's gradient (``.grad`` attribute) should be unscaled before the optimizer updates the parameters, so the scale factor does not interfere with the learning rate. .. note:: AMP/fp16 may not work for every model! For example, most bf16-pretrained models cannot operate in the fp16 numerical range of max 65504 and will cause gradients to overflow instead of underflow. In this case, the scale factor may decrease under 1 as an attempt to bring gradients to a number representable in the fp16 dynamic range. While one may expect the scale to always be above 1, our GradScaler does NOT make this guarantee to maintain performance. If you encounter NaNs in your loss or gradients when running with AMP/fp16, verify your model is compatible. .. currentmodule:: torch.cuda.amp .. autoclass:: GradScaler :members: .. _autocast-op-reference: Autocast Op Reference ^^^^^^^^^^^^^^^^^^^^^ .. _autocast-eligibility: Op Eligibility -------------- Ops that run in ``float64`` or non-floating-point dtypes are not eligible, and will run in these types whether or not autocast is enabled. Only out-of-place ops and Tensor methods are eligible. In-place variants and calls that explicitly supply an ``out=...`` Tensor are allowed in autocast-enabled regions, but won't go through autocasting. For example, in an autocast-enabled region ``a.addmm(b, c)`` can autocast, but ``a.addmm_(b, c)`` and ``a.addmm(b, c, out=d)`` cannot. For best performance and stability, prefer out-of-place ops in autocast-enabled regions. Ops called with an explicit ``dtype=...`` argument are not eligible, and will produce output that respects the ``dtype`` argument. .. _autocast-cuda-op-reference: CUDA Op-Specific Behavior ------------------------- The following lists describe the behavior of eligible ops in autocast-enabled regions. These ops always go through autocasting whether they are invoked as part of a :class:`torch.nn.Module`, as a function, or as a :class:`torch.Tensor` method. If functions are exposed in multiple namespaces, they go through autocasting regardless of the namespace. Ops not listed below do not go through autocasting. They run in the type defined by their inputs. However, autocasting may still change the type in which unlisted ops run if they're downstream from autocasted ops. If an op is unlisted, we assume it's numerically stable in ``float16``. If you believe an unlisted op is numerically unstable in ``float16``, please file an issue. CUDA Ops that can autocast to ``float16`` """"""""""""""""""""""""""""""""""""""""" ``__matmul__``, ``addbmm``, ``addmm``, ``addmv``, ``addr``, ``baddbmm``, ``bmm``, ``chain_matmul``, ``multi_dot``, ``conv1d``, ``conv2d``, ``conv3d``, ``conv_transpose1d``, ``conv_transpose2d``, ``conv_transpose3d``, ``GRUCell``, ``linear``, ``LSTMCell``, ``matmul``, ``mm``, ``mv``, ``prelu``, ``RNNCell`` CUDA Ops that can autocast to ``float32`` """"""""""""""""""""""""""""""""""""""""" ``__pow__``, ``__rdiv__``, ``__rpow__``, ``__rtruediv__``, ``acos``, ``asin``, ``binary_cross_entropy_with_logits``, ``cosh``, ``cosine_embedding_loss``, ``cdist``, ``cosine_similarity``, ``cross_entropy``, ``cumprod``, ``cumsum``, ``dist``, ``erfinv``, ``exp``, ``expm1``, ``group_norm``, ``hinge_embedding_loss``, ``kl_div``, ``l1_loss``, ``layer_norm``, ``log``, ``log_softmax``, ``log10``, ``log1p``, ``log2``, ``margin_ranking_loss``, ``mse_loss``, ``multilabel_margin_loss``, ``multi_margin_loss``, ``nll_loss``, ``norm``, ``normalize``, ``pdist``, ``poisson_nll_loss``, ``pow``, ``prod``, ``reciprocal``, ``rsqrt``, ``sinh``, ``smooth_l1_loss``, ``soft_margin_loss``, ``softmax``, ``softmin``, ``softplus``, ``sum``, ``renorm``, ``tan``, ``triplet_margin_loss`` CUDA Ops that promote to the widest input type """""""""""""""""""""""""""""""""""""""""""""" These ops don't require a particular dtype for stability, but take multiple inputs and require that the inputs' dtypes match. If all of the inputs are ``float16``, the op runs in ``float16``. If any of the inputs is ``float32``, autocast casts all inputs to ``float32`` and runs the op in ``float32``. ``addcdiv``, ``addcmul``, ``atan2``, ``bilinear``, ``cross``, ``dot``, ``grid_sample``, ``index_put``, ``scatter_add``, ``tensordot`` Some ops not listed here (e.g., binary ops like ``add``) natively promote inputs without autocasting's intervention. If inputs are a mixture of ``float16`` and ``float32``, these ops run in ``float32`` and produce ``float32`` output, regardless of whether autocast is enabled. Prefer ``binary_cross_entropy_with_logits`` over ``binary_cross_entropy`` """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" The backward passes of :func:`torch.nn.functional.binary_cross_entropy` (and :mod:`torch.nn.BCELoss`, which wraps it) can produce gradients that aren't representable in ``float16``. In autocast-enabled regions, the forward input may be ``float16``, which means the backward gradient must be representable in ``float16`` (autocasting ``float16`` forward inputs to ``float32`` doesn't help, because that cast must be reversed in backward). Therefore, ``binary_cross_entropy`` and ``BCELoss`` raise an error in autocast-enabled regions. Many models use a sigmoid layer right before the binary cross entropy layer. In this case, combine the two layers using :func:`torch.nn.functional.binary_cross_entropy_with_logits` or :mod:`torch.nn.BCEWithLogitsLoss`. ``binary_cross_entropy_with_logits`` and ``BCEWithLogits`` are safe to autocast. .. _autocast-cpu-op-reference: CPU Op-Specific Behavior ------------------------ The following lists describe the behavior of eligible ops in autocast-enabled regions. These ops always go through autocasting whether they are invoked as part of a :class:`torch.nn.Module`, as a function, or as a :class:`torch.Tensor` method. If functions are exposed in multiple namespaces, they go through autocasting regardless of the namespace. Ops not listed below do not go through autocasting. They run in the type defined by their inputs. However, autocasting may still change the type in which unlisted ops run if they're downstream from autocasted ops. If an op is unlisted, we assume it's numerically stable in ``bfloat16``. If you believe an unlisted op is numerically unstable in ``bfloat16``, please file an issue. CPU Ops that can autocast to ``bfloat16`` """"""""""""""""""""""""""""""""""""""""" ``conv1d``, ``conv2d``, ``conv3d``, ``bmm``, ``mm``, ``baddbmm``, ``addmm``, ``addbmm``, ``linear``, ``matmul``, ``_convolution`` CPU Ops that can autocast to ``float32`` """""""""""""""""""""""""""""""""""""""" ``conv_transpose1d``, ``conv_transpose2d``, ``conv_transpose3d``, ``avg_pool3d``, ``binary_cross_entropy``, ``grid_sampler``, ``grid_sampler_2d``, ``_grid_sampler_2d_cpu_fallback``, ``grid_sampler_3d``, ``polar``, ``prod``, ``quantile``, ``nanquantile``, ``stft``, ``cdist``, ``trace``, ``view_as_complex``, ``cholesky``, ``cholesky_inverse``, ``cholesky_solve``, ``inverse``, ``lu_solve``, ``orgqr``, ``inverse``, ``ormqr``, ``pinverse``, ``max_pool3d``, ``max_unpool2d``, ``max_unpool3d``, ``adaptive_avg_pool3d``, ``reflection_pad1d``, ``reflection_pad2d``, ``replication_pad1d``, ``replication_pad2d``, ``replication_pad3d``, ``mse_loss``, ``ctc_loss``, ``kl_div``, ``multilabel_margin_loss``, ``fft_fft``, ``fft_ifft``, ``fft_fft2``, ``fft_ifft2``, ``fft_fftn``, ``fft_ifftn``, ``fft_rfft``, ``fft_irfft``, ``fft_rfft2``, ``fft_irfft2``, ``fft_rfftn``, ``fft_irfftn``, ``fft_hfft``, ``fft_ihfft``, ``linalg_matrix_norm``, ``linalg_cond``, ``linalg_matrix_rank``, ``linalg_solve``, ``linalg_cholesky``, ``linalg_svdvals``, ``linalg_eigvals``, ``linalg_eigvalsh``, ``linalg_inv``, ``linalg_householder_product``, ``linalg_tensorinv``, ``linalg_tensorsolve``, ``fake_quantize_per_tensor_affine``, ``eig``, ``geqrf``, ``lstsq``, ``_lu_with_info``, ``qr``, ``solve``, ``svd``, ``symeig``, ``triangular_solve``, ``fractional_max_pool2d``, ``fractional_max_pool3d``, ``adaptive_max_pool3d``, ``multilabel_margin_loss_forward``, ``linalg_qr``, ``linalg_cholesky_ex``, ``linalg_svd``, ``linalg_eig``, ``linalg_eigh``, ``linalg_lstsq``, ``linalg_inv_ex`` CPU Ops that promote to the widest input type """"""""""""""""""""""""""""""""""""""""""""" These ops don't require a particular dtype for stability, but take multiple inputs and require that the inputs' dtypes match. If all of the inputs are ``bfloat16``, the op runs in ``bfloat16``. If any of the inputs is ``float32``, autocast casts all inputs to ``float32`` and runs the op in ``float32``. ``cat``, ``stack``, ``index_copy`` Some ops not listed here (e.g., binary ops like ``add``) natively promote inputs without autocasting's intervention. If inputs are a mixture of ``bfloat16`` and ``float32``, these ops run in ``float32`` and produce ``float32`` output, regardless of whether autocast is enabled. .. This module needs to be documented. Adding here in the meantime .. for tracking purposes .. py:module:: torch.amp.autocast_mode .. py:module:: torch.cpu.amp.autocast_mode .. py:module:: torch.cuda.amp.autocast_mode .. py:module:: torch.cuda.amp.common .. py:module:: torch.cuda.amp.grad_scaler