.. _torch-library-docs: torch.library =================================== .. py:module:: torch.library .. currentmodule:: torch.library torch.library is a collection of APIs for extending PyTorch's core library of operators. It contains utilities for testing custom operators, creating new custom operators, and extending operators defined with PyTorch's C++ operator registration APIs (e.g. aten operators). For a detailed guide on effectively using these APIs, please see `PyTorch Custom Operators Landing Page <https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html>`_ for more details on how to effectively use these APIs. Testing custom ops ------------------ Use :func:`torch.library.opcheck` to test custom ops for incorrect usage of the Python torch.library and/or C++ TORCH_LIBRARY APIs. Also, if your operator supports training, use :func:`torch.autograd.gradcheck` to test that the gradients are mathematically correct. .. autofunction:: opcheck Creating new custom ops in Python --------------------------------- Use :func:`torch.library.custom_op` to create new custom ops. .. autofunction:: custom_op .. autofunction:: triton_op .. autofunction:: wrap_triton Extending custom ops (created from Python or C++) ------------------------------------------------- Use the register.* methods, such as :func:`torch.library.register_kernel` and :func:`torch.library.register_fake`, to add implementations for any operators (they may have been created using :func:`torch.library.custom_op` or via PyTorch's C++ operator registration APIs). .. autofunction:: register_kernel .. autofunction:: register_autocast .. autofunction:: register_autograd .. autofunction:: register_fake .. autofunction:: register_vmap .. autofunction:: impl_abstract .. autofunction:: get_ctx .. autofunction:: register_torch_dispatch .. autofunction:: infer_schema .. autoclass:: torch._library.custom_ops.CustomOpDef .. automethod:: set_kernel_enabled Low-level APIs -------------- The following APIs are direct bindings to PyTorch's C++ low-level operator registration APIs. .. warning:: The low-level operator registration APIs and the PyTorch Dispatcher are a complicated PyTorch concept. We recommend you use the higher level APIs above (that do not require a torch.library.Library object) when possible. This blog post <http://blog.ezyang.com/2020/09/lets-talk-about-the-pytorch-dispatcher/>`_ is a good starting point to learn about the PyTorch Dispatcher. A tutorial that walks you through some examples on how to use this API is available on `Google Colab <https://colab.research.google.com/drive/1RRhSfk7So3Cn02itzLWE9K4Fam-8U011?usp=sharing>`_. .. autoclass:: torch.library.Library :members: .. autofunction:: fallthrough_kernel .. autofunction:: define .. autofunction:: impl