python.closure ================== cond_closed_over_variable ^^^^^^^^^^^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`torch.cond <torch.cond>`, :doc:`python.closure <python.closure>` Support Level: SUPPORTED Original source code: .. code-block:: python # mypy: allow-untyped-defs import torch from functorch.experimental.control_flow import cond class CondClosedOverVariable(torch.nn.Module): """ torch.cond() supports branches closed over arbitrary variables. """ def forward(self, pred, x): def true_fn(val): return x * 2 def false_fn(val): return x - 2 return cond(pred, true_fn, false_fn, [x + 1]) example_args = (torch.tensor(True), torch.randn(3, 2)) tags = {"torch.cond", "python.closure"} model = CondClosedOverVariable() torch.export.export(model, example_args) Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, pred: "b8[]", x: "f32[3, 2]"): add: "f32[3, 2]" = torch.ops.aten.add.Tensor(x, 1); add = None true_graph_0 = self.true_graph_0 false_graph_0 = self.false_graph_0 cond = torch.ops.higher_order.cond(pred, true_graph_0, false_graph_0, [x]); pred = true_graph_0 = false_graph_0 = x = None getitem: "f32[3, 2]" = cond[0]; cond = None return (getitem,) class true_graph_0(torch.nn.Module): def forward(self, x: "f32[3, 2]"): mul: "f32[3, 2]" = torch.ops.aten.mul.Tensor(x, 2); x = None return (mul,) class false_graph_0(torch.nn.Module): def forward(self, x: "f32[3, 2]"): sub: "f32[3, 2]" = torch.ops.aten.sub.Tensor(x, 2); x = None return (sub,) Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='pred'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='x'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)]) Range constraints: {} nested_function ^^^^^^^^^^^^^^^ .. note:: Tags: :doc:`python.closure <python.closure>` Support Level: SUPPORTED Original source code: .. code-block:: python # mypy: allow-untyped-defs import torch class NestedFunction(torch.nn.Module): """ Nested functions are traced through. Side effects on global captures are not supported though. """ def forward(self, a, b): x = a + b z = a - b def closure(y): nonlocal x x += 1 return x * y + z return closure(x) example_args = (torch.randn(3, 2), torch.randn(2)) tags = {"python.closure"} model = NestedFunction() torch.export.export(model, example_args) Result: .. code-block:: ExportedProgram: class GraphModule(torch.nn.Module): def forward(self, a: "f32[3, 2]", b: "f32[2]"): add: "f32[3, 2]" = torch.ops.aten.add.Tensor(a, b) sub: "f32[3, 2]" = torch.ops.aten.sub.Tensor(a, b); a = b = None add_: "f32[3, 2]" = torch.ops.aten.add_.Tensor(add, 1); add = None mul: "f32[3, 2]" = torch.ops.aten.mul.Tensor(add_, add_); add_ = None add_1: "f32[3, 2]" = torch.ops.aten.add.Tensor(mul, sub); mul = sub = None return (add_1,) Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='a'), target=None, persistent=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='b'), target=None, persistent=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='add_1'), target=None)]) Range constraints: {}