torch.func Whirlwind Tour
=========================

What is torch.func?
-------------------

.. currentmodule:: torch.func

torch.func, previously known as functorch, is a library for
`JAX <https://github.com/google/jax>`_-like composable function transforms in
PyTorch.

- A "function transform" is a higher-order function that accepts a numerical
  function and returns a new function that computes a different quantity.
- torch.func has auto-differentiation transforms (``grad(f)`` returns a function
  that computes the gradient of ``f``), a vectorization/batching transform
  (``vmap(f)`` returns a function that computes ``f`` over batches of inputs),
  and others.
- These function transforms can compose with each other arbitrarily. For
  example, composing ``vmap(grad(f))`` computes a quantity called
  per-sample-gradients that stock PyTorch cannot efficiently compute today.

Why composable function transforms?
-----------------------------------
There are a number of use cases that are tricky to do in PyTorch today:
- computing per-sample-gradients (or other per-sample quantities)

- running ensembles of models on a single machine
- efficiently batching together tasks in the inner-loop of MAML
- efficiently computing Jacobians and Hessians
- efficiently computing batched Jacobians and Hessians

Composing :func:`vmap`, :func:`grad`, :func:`vjp`, and :func:`jvp` transforms
allows us to express the above without designing a separate subsystem for each.

What are the transforms?
------------------------

:func:`grad` (gradient computation)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

``grad(func)`` is our gradient computation transform. It returns a new function
that computes the gradients of ``func``. It assumes ``func`` returns a single-element
Tensor and by default it computes the gradients of the output of ``func`` w.r.t.
to the first input.

.. code-block:: python

    import torch
    from torch.func import grad
    x = torch.randn([])
    cos_x = grad(lambda x: torch.sin(x))(x)
    assert torch.allclose(cos_x, x.cos())

    # Second-order gradients
    neg_sin_x = grad(grad(lambda x: torch.sin(x)))(x)
    assert torch.allclose(neg_sin_x, -x.sin())

:func:`vmap` (auto-vectorization)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Note: :func:`vmap` imposes restrictions on the code that it can be used on. For more
details, please see :ref:`ux-limitations`.

``vmap(func)(*inputs)`` is a transform that adds a dimension to all Tensor
operations in ``func``. ``vmap(func)`` returns a new function that maps ``func``
over some dimension (default: 0) of each Tensor in inputs.

vmap is useful for hiding batch dimensions: one can write a function func that
runs on examples and then lift it to a function that can take batches of
examples with ``vmap(func)``, leading to a simpler modeling experience:

.. code-block:: python

    import torch
    from torch.func import vmap
    batch_size, feature_size = 3, 5
    weights = torch.randn(feature_size, requires_grad=True)

    def model(feature_vec):
        # Very simple linear model with activation
        assert feature_vec.dim() == 1
        return feature_vec.dot(weights).relu()

    examples = torch.randn(batch_size, feature_size)
    result = vmap(model)(examples)

When composed with :func:`grad`, :func:`vmap` can be used to compute per-sample-gradients:

.. code-block:: python

    from torch.func import vmap
    batch_size, feature_size = 3, 5

    def model(weights,feature_vec):
        # Very simple linear model with activation
        assert feature_vec.dim() == 1
        return feature_vec.dot(weights).relu()

    def compute_loss(weights, example, target):
        y = model(weights, example)
        return ((y - target) ** 2).mean()  # MSELoss

    weights = torch.randn(feature_size, requires_grad=True)
    examples = torch.randn(batch_size, feature_size)
    targets = torch.randn(batch_size)
    inputs = (weights,examples, targets)
    grad_weight_per_example = vmap(grad(compute_loss), in_dims=(None, 0, 0))(*inputs)

:func:`vjp` (vector-Jacobian product)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :func:`vjp` transform applies ``func`` to ``inputs`` and returns a new function
that computes the vector-Jacobian product (vjp) given some ``cotangents`` Tensors.

.. code-block:: python

    from torch.func import vjp

    inputs = torch.randn(3)
    func = torch.sin
    cotangents = (torch.randn(3),)

    outputs, vjp_fn = vjp(func, inputs); vjps = vjp_fn(*cotangents)

:func:`jvp` (Jacobian-vector product)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :func:`jvp` transforms computes Jacobian-vector-products and is also known as
"forward-mode AD". It is not a higher-order function unlike most other transforms,
but it returns the outputs of ``func(inputs)`` as well as the jvps.

.. code-block:: python

    from torch.func import jvp
    x = torch.randn(5)
    y = torch.randn(5)
    f = lambda x, y: (x * y)
    _, out_tangent = jvp(f, (x, y), (torch.ones(5), torch.ones(5)))
    assert torch.allclose(out_tangent, x + y)

:func:`jacrev`, :func:`jacfwd`, and :func:`hessian`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The :func:`jacrev` transform returns a new function that takes in ``x`` and returns
the Jacobian of the function with respect to ``x`` using reverse-mode AD.

.. code-block:: python

    from torch.func import jacrev
    x = torch.randn(5)
    jacobian = jacrev(torch.sin)(x)
    expected = torch.diag(torch.cos(x))
    assert torch.allclose(jacobian, expected)

:func:`jacrev` can be composed with :func:`vmap` to produce batched jacobians:

.. code-block:: python

    x = torch.randn(64, 5)
    jacobian = vmap(jacrev(torch.sin))(x)
    assert jacobian.shape == (64, 5, 5)

:func:`jacfwd` is a drop-in replacement for jacrev that computes Jacobians using
forward-mode AD:

.. code-block:: python

    from torch.func import jacfwd
    x = torch.randn(5)
    jacobian = jacfwd(torch.sin)(x)
    expected = torch.diag(torch.cos(x))
    assert torch.allclose(jacobian, expected)

Composing :func:`jacrev` with itself or :func:`jacfwd` can produce hessians:

.. code-block:: python

    def f(x):
        return x.sin().sum()

    x = torch.randn(5)
    hessian0 = jacrev(jacrev(f))(x)
    hessian1 = jacfwd(jacrev(f))(x)

:func:`hessian` is a convenience function that combines jacfwd and jacrev:

.. code-block:: python

    from torch.func import hessian

    def f(x):
        return x.sin().sum()

    x = torch.randn(5)
    hess = hessian(f)(x)