.. currentmodule:: torch

.. _sparse-docs:

torch.sparse
============

Introduction
++++++++++++

PyTorch provides :class:`torch.Tensor` to represent a
multi-dimensional array containing elements of a single data type. By
default, array elements are stored contiguously in memory leading to
efficient implementations of various array processing algorithms that
relay on the fast access to array elements.  However, there exists an
important class of multi-dimensional arrays, so-called sparse arrays,
where the contiguous memory storage of array elements turns out to be
suboptimal. Sparse arrays have a property of having a vast portion of
elements being equal to zero which means that a lot of memory as well
as processor resources can be spared if only the non-zero elements are
stored or/and processed. Various sparse storage formats (`such as COO,
CSR/CSC, LIL, etc.`__) have been developed that are optimized for a
particular structure of non-zero elements in sparse arrays as well as
for specific operations on the arrays.

__ https://en.wikipedia.org/wiki/Sparse_matrix

.. note::

   When talking about storing only non-zero elements of a sparse
   array, the usage of adjective "non-zero" is not strict: one is
   allowed to store also zeros in the sparse array data
   structure. Hence, in the following, we use "specified elements" for
   those array elements that are actually stored. In addition, the
   unspecified elements are typically assumed to have zero value, but
   not only, hence we use the term "fill value" to denote such
   elements.

.. note::

   Using a sparse storage format for storing sparse arrays can be
   advantageous only when the size and sparsity levels of arrays are
   high. Otherwise, for small-sized or low-sparsity arrays using the
   contiguous memory storage format is likely the most efficient
   approach.

.. warning::

  The PyTorch API of sparse tensors is in beta and may change in the near future.

.. _sparse-coo-docs:

Sparse COO tensors
++++++++++++++++++

Currently, PyTorch implements the so-called Coordinate format, or COO
format, as the default sparse storage format for storing sparse
tensors.  In COO format, the specified elements are stored as tuples
of element indices and the corresponding values. In particular,

  - the indices of specified elements are collected in ``indices``
    tensor of size ``(ndim, nse)`` and with element type
    ``torch.int64``,

  - the corresponding values are collected in ``values`` tensor of
    size ``(nse,)`` and with an arbitrary integer or floating point
    number element type,

where ``ndim`` is the dimensionality of the tensor and ``nse`` is the
number of specified elements.

.. note::

   The memory consumption of a sparse COO tensor is at least ``(ndim *
   8 + <size of element type in bytes>) * nse`` bytes (plus a constant
   overhead from storing other tensor data).

   The memory consumption of a strided tensor is at least
   ``product(<tensor shape>) * <size of element type in bytes>``.

   For example, the memory consumption of a 10 000 x 10 000 tensor
   with 100 000 non-zero 32-bit floating point numbers is at least
   ``(2 * 8 + 4) * 100 000 = 2 000 000`` bytes when using COO tensor
   layout and ``10 000 * 10 000 * 4 = 400 000 000`` bytes when using
   the default strided tensor layout. Notice the 200 fold memory
   saving from using the COO storage format.

Construction
------------

A sparse COO tensor can be constructed by providing the two tensors of
indices and values, as well as the size of the sparse tensor (when it
cannot be inferred from the indices and values tensors) to a function
:func:`torch.sparse_coo_tensor`.

Suppose we want to define a sparse tensor with the entry 3 at location
(0, 2), entry 4 at location (1, 0), and entry 5 at location (1, 2).
Unspecified elements are assumed to have the same value, fill value,
which is zero by default. We would then write:

    >>> i = [[0, 1, 1],
             [2, 0, 2]]
    >>> v =  [3, 4, 5]
    >>> s = torch.sparse_coo_tensor(i, v, (2, 3))
    >>> s
    tensor(indices=tensor([[0, 1, 1],
                           [2, 0, 2]]),
           values=tensor([3, 4, 5]),
           size=(2, 3), nnz=3, layout=torch.sparse_coo)
    >>> s.to_dense()
    tensor([[0, 0, 3],
            [4, 0, 5]])

Note that the input ``i`` is NOT a list of index tuples.  If you want
to write your indices this way, you should transpose before passing them to
the sparse constructor:

    >>> i = [[0, 2], [1, 0], [1, 2]]
    >>> v =  [3,      4,      5    ]
    >>> s = torch.sparse_coo_tensor(list(zip(*i)), v, (2, 3))
    >>> # Or another equivalent formulation to get s
    >>> s = torch.sparse_coo_tensor(torch.tensor(i).t(), v, (2, 3))
    >>> torch.sparse_coo_tensor(i.t(), v, torch.Size([2,3])).to_dense()
    tensor([[0, 0, 3],
            [4, 0, 5]])

An empty sparse COO tensor can be constructed by specifying its size
only:

    >>> torch.sparse_coo_tensor(size=(2, 3))
    tensor(indices=tensor([], size=(2, 0)),
           values=tensor([], size=(0,)),
           size=(2, 3), nnz=0, layout=torch.sparse_coo)

.. _sparse-hybrid-coo-docs:

Hybrid sparse COO tensors
-------------------------

Pytorch implements an extension of sparse tensors with scalar values
to sparse tensors with (contiguous) tensor values. Such tensors are
called hybrid tensors.

PyTorch hybrid COO tensor extends the sparse COO tensor by allowing
the ``values`` tensor to be a multi-dimensional tensor so that we
have:

  - the indices of specified elements are collected in ``indices``
    tensor of size ``(sparse_dims, nse)`` and with element type
    ``torch.int64``,

  - the corresponding (tensor) values are collected in ``values``
    tensor of size ``(nse, dense_dims)`` and with an arbitrary integer
    or floating point number element type.

.. note::

   We use (M + K)-dimensional tensor to denote a N-dimensional hybrid
   sparse tensor, where M and K are the numbers of sparse and dense
   dimensions, respectively, such that M + K == N holds.

Suppose we want to create a (2 + 1)-dimensional tensor with the entry
[3, 4] at location (0, 2), entry [5, 6] at location (1, 0), and entry
[7, 8] at location (1, 2). We would write

    >>> i = [[0, 1, 1],
             [2, 0, 2]]
    >>> v =  [[3, 4], [5, 6], [7, 8]]
    >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))
    >>> s
    tensor(indices=tensor([[0, 1, 1],
                           [2, 0, 2]]),
           values=tensor([[3, 4],
                          [5, 6],
                          [7, 8]]),
           size=(2, 3, 2), nnz=3, layout=torch.sparse_coo)

    >>> s.to_dense()
    tensor([[[0, 0],
             [0, 0],
             [3, 4]],
            [[5, 6],
             [0, 0],
             [7, 8]]])

In general, if ``s`` is a sparse COO tensor and ``M =
s.sparse_dim()``, ``K = s.dense_dim()``, then we have the following
invariants:

  - ``M + K == len(s.shape) == s.ndim`` - dimensionality of a tensor
    is the sum of the number of sparse and dense dimensions,
  - ``s.indices().shape == (M, nse)`` - sparse indices are stored
    explicitly,
  - ``s.values().shape == (nse,) + s.shape[M : M + K]`` - the values
    of a hybrid tensor are K-dimensional tensors,
  - ``s.values().layout == torch.strided`` - values are stored as
    strided tensors.

.. note::

   Dense dimensions always follow sparse dimensions, that is, mixing
   of dense and sparse dimensions is not supported.

.. _sparse-uncoalesced-coo-docs:

Uncoalesced sparse COO tensors
------------------------------

PyTorch sparse COO tensor format permits *uncoalesced* sparse tensors,
where there may be duplicate coordinates in the indices; in this case,
the interpretation is that the value at that index is the sum of all
duplicate value entries. For example, one can specify multiple values,
``3`` and ``4``, for the same index ``1``, that leads to an 1-D
uncoalesced tensor:

    >>> i = [[1, 1]]
    >>> v =  [3, 4]
    >>> s=torch.sparse_coo_tensor(i, v, (3,))
    >>> s
    tensor(indices=tensor([[1, 1]]),
           values=tensor(  [3, 4]),
           size=(3,), nnz=2, layout=torch.sparse_coo)

while the coalescing process will accumulate the multi-valued elements
into a single value using summation:

    >>> s.coalesce()
    tensor(indices=tensor([[1]]),
           values=tensor([7]),
           size=(3,), nnz=1, layout=torch.sparse_coo)

In general, the output of :meth:`torch.Tensor.coalesce` method is a
sparse tensor with the following properties:

- the indices of specified tensor elements are unique,
- the indices are sorted in lexicographical order,
- :meth:`torch.Tensor.is_coalesced()` returns ``True``.

.. note::

  For the most part, you shouldn't have to care whether or not a
  sparse tensor is coalesced or not, as most operations will work
  identically given a coalesced or uncoalesced sparse tensor.

  However, some operations can be implemented more efficiently on
  uncoalesced tensors, and some on coalesced tensors.

  For instance, addition of sparse COO tensors is implemented by
  simply concatenating the indices and values tensors:

    >>> a = torch.sparse_coo_tensor([[1, 1]], [5, 6], (2,))
    >>> b = torch.sparse_coo_tensor([[0, 0]], [7, 8], (2,))
    >>> a + b
    tensor(indices=tensor([[0, 0, 1, 1]]),
           values=tensor([7, 8, 5, 6]),
           size=(2,), nnz=4, layout=torch.sparse_coo)

  If you repeatedly perform an operation that can produce duplicate
  entries (e.g., :func:`torch.Tensor.add`), you should occasionally
  coalesce your sparse tensors to prevent them from growing too large.

  On the other hand, the lexicographical ordering of indices can be
  advantageous for implementing algorithms that involve many element
  selection operations, such as slicing or matrix products.


Working with sparse COO tensors
-------------------------------

Let's consider the following example:

    >>> i = [[0, 1, 1],
             [2, 0, 2]]
    >>> v =  [[3, 4], [5, 6], [7, 8]]
    >>> s = torch.sparse_coo_tensor(i, v, (2, 3, 2))

As mentioned above, a sparse COO tensor is a :class:`torch.Tensor`
instance and to distinguish it from the `Tensor` instances that use
some other layout, on can use :attr:`torch.Tensor.is_sparse` or
:attr:`torch.Tensor.layout` properties:

    >>> isinstance(s, torch.Tensor)
    True
    >>> s.is_sparse
    True
    >>> s.layout == torch.sparse_coo
    True

The number of sparse and dense dimensions can be acquired using
methods :meth:`torch.Tensor.sparse_dim` and
:meth:`torch.Tensor.dense_dim`, respectively. For instance:

    >>> s.sparse_dim(), s.dense_dim()
    (2, 1)


If ``s`` is a sparse COO tensor then its COO format data can be
acquired using methods :meth:`torch.Tensor.indices()` and
:meth:`torch.Tensor.values()`.

.. note::

  Currently, one can acquire the COO format data only when the tensor
  instance is coalesced:

    >>> s.indices()
    RuntimeError: Cannot get indices on an uncoalesced tensor, please call .coalesce() first

  For acquiring the COO format data of an uncoalesced tensor, use
  :func:`torch.Tensor._values()` and :func:`torch.Tensor._indices()`:

    >>> s._indices()
    tensor([[0, 1, 1],
            [2, 0, 2]])

  .. See https://github.com/pytorch/pytorch/pull/45695 for a new API.

Constructing a new sparse COO tensor results a tensor that is not
coalesced:

    >>> s.is_coalesced()
    False

but one can construct a coalesced copy of a sparse COO tensor using
the :meth:`torch.Tensor.coalesce` method:

    >>> s2 = s.coalesce()
    >>> s2.indices()
    tensor([[0, 1, 1],
           [2, 0, 2]])

When working with uncoalesced sparse COO tensors, one must take into
an account the additive nature of uncoalesced data: the values of the
same indices are the terms of a sum that evaluation gives the value of
the corresponding tensor element. For example, the scalar
multiplication on an uncoalesced sparse tensor could be implemented by
multiplying all the uncoalesced values with the scalar because ``c *
(a + b) == c * a + c * b`` holds. However, any nonlinear operation,
say, a square root, cannot be implemented by applying the operation to
uncoalesced data because ``sqrt(a + b) == sqrt(a) + sqrt(b)`` does not
hold in general.

Slicing (with positive step) of a sparse COO tensor is supported only
for dense dimensions. Indexing is supported for both sparse and dense
dimensions:

    >>> s[1]
    tensor(indices=tensor([[0, 2]]),
           values=tensor([[5, 6],
                          [7, 8]]),
           size=(3, 2), nnz=2, layout=torch.sparse_coo)
    >>> s[1, 0, 1]
    tensor(6)
    >>> s[1, 0, 1:]
    tensor([6])


In PyTorch, the fill value of a sparse tensor cannot be specified
explicitly and is assumed to be zero in general. However, there exists
operations that may interpret the fill value differently. For
instance, :func:`torch.sparse.softmax` computes the softmax with the
assumption that the fill value is negative infinity.

.. See https://github.com/Quansight-Labs/rfcs/tree/pearu/rfc-fill-value/RFC-0004-sparse-fill-value for a new API

Supported Linear Algebra operations
+++++++++++++++++++++++++++++++++++

The following table summarizes supported Linear Algebra operations on
sparse matrices where the operands layouts may vary. Here
``T[layout]`` denotes a tensor with a given layout. Similarly,
``M[layout]`` denotes a matrix (2-D PyTorch tensor), and ``V[layout]``
denotes a vector (1-D PyTorch tensor). In addition, ``f`` denotes a
scalar (float or 0-D PyTorch tensor), ``*`` is element-wise
multiplication, and ``@`` is matrix multiplication.

.. csv-table::
   :header: "PyTorch operation", "Sparse grad?", "Layout signature"
   :widths: 20, 5, 60
   :delim: ;

   :func:`torch.mv`;no; ``M[sparse_coo] @ V[strided] -> V[strided]``
   :func:`torch.matmul`; no; ``M[sparse_coo] @ M[strided] -> M[strided]``
   :func:`torch.mm`; no; ``M[sparse_coo] @ M[strided] -> M[strided]``
   :func:`torch.sparse.mm`; yes; ``M[sparse_coo] @ M[strided] -> M[strided]``
   :func:`torch.smm`; no; ``M[sparse_coo] @ M[strided] -> M[sparse_coo]``
   :func:`torch.hspmm`; no; ``M[sparse_coo] @ M[strided] -> M[hybrid sparse_coo]``
   :func:`torch.bmm`; no; ``T[sparse_coo] @ T[strided] -> T[strided]``
   :func:`torch.addmm`; no; ``f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]``
   :func:`torch.sparse.addmm`; yes; ``f * M[strided] + f * (M[sparse_coo] @ M[strided]) -> M[strided]``
   :func:`torch.sspaddmm`; no; ``f * M[sparse_coo] + f * (M[sparse_coo] @ M[strided]) -> M[sparse_coo]``
   :func:`torch.lobpcg`; no; ``GENEIG(M[sparse_coo]) -> M[strided], M[strided]``
   :func:`torch.pca_lowrank`; yes; ``PCA(M[sparse_coo]) -> M[strided], M[strided], M[strided]``
   :func:`torch.svd_lowrank`; yes; ``SVD(M[sparse_coo]) -> M[strided], M[strided], M[strided]``

where "Sparse grad?" column indicates if the PyTorch operation supports
backward with respect to sparse matrix argument. All PyTorch operations,
except :func:`torch.smm`, support backward with respect to strided
matrix arguments.

.. note::

   Currently, PyTorch does not support matrix multiplication with the
   layout signature ``M[strided] @ M[sparse_coo]``. However,
   applications can still compute this using the matrix relation ``D @
   S == (S.t() @ D.t()).t()``.

.. class:: Tensor()
   :noindex:

   The following methods are specific to :ref:`sparse tensors <sparse-docs>`:

    .. autoattribute:: is_sparse
    .. automethod:: dense_dim
    .. automethod:: sparse_dim
    .. automethod:: sparse_mask
    .. automethod:: sparse_resize_
    .. automethod:: sparse_resize_and_clear_
    .. automethod:: to_dense
    .. automethod:: to_sparse
    .. The following methods are specific to :ref:`sparse COO tensors <sparse-coo-docs>`:
    .. automethod:: coalesce
    .. automethod:: is_coalesced
    .. automethod:: indices
    .. automethod:: values

The following :class:`torch.Tensor` methods support :ref:`sparse COO
tensors <sparse-coo-docs>`:

:meth:`~torch.Tensor.add`
:meth:`~torch.Tensor.add_`
:meth:`~torch.Tensor.addmm`
:meth:`~torch.Tensor.addmm_`
:meth:`~torch.Tensor.any`
:meth:`~torch.Tensor.asin`
:meth:`~torch.Tensor.asin_`
:meth:`~torch.Tensor.arcsin`
:meth:`~torch.Tensor.arcsin_`
:meth:`~torch.Tensor.bmm`
:meth:`~torch.Tensor.clone`
:meth:`~torch.Tensor.deg2rad`
:meth:`~torch.Tensor.deg2rad_`
:meth:`~torch.Tensor.detach`
:meth:`~torch.Tensor.detach_`
:meth:`~torch.Tensor.dim`
:meth:`~torch.Tensor.div`
:meth:`~torch.Tensor.div_`
:meth:`~torch.Tensor.floor_divide`
:meth:`~torch.Tensor.floor_divide_`
:meth:`~torch.Tensor.get_device`
:meth:`~torch.Tensor.index_select`
:meth:`~torch.Tensor.isnan`
:meth:`~torch.Tensor.log1p`
:meth:`~torch.Tensor.log1p_`
:meth:`~torch.Tensor.mm`
:meth:`~torch.Tensor.mul`
:meth:`~torch.Tensor.mul_`
:meth:`~torch.Tensor.mv`
:meth:`~torch.Tensor.narrow_copy`
:meth:`~torch.Tensor.neg`
:meth:`~torch.Tensor.neg_`
:meth:`~torch.Tensor.negative`
:meth:`~torch.Tensor.negative_`
:meth:`~torch.Tensor.numel`
:meth:`~torch.Tensor.rad2deg`
:meth:`~torch.Tensor.rad2deg_`
:meth:`~torch.Tensor.resize_as_`
:meth:`~torch.Tensor.size`
:meth:`~torch.Tensor.pow`
:meth:`~torch.Tensor.sqrt`
:meth:`~torch.Tensor.square`
:meth:`~torch.Tensor.smm`
:meth:`~torch.Tensor.sspaddmm`
:meth:`~torch.Tensor.sub`
:meth:`~torch.Tensor.sub_`
:meth:`~torch.Tensor.t`
:meth:`~torch.Tensor.t_`
:meth:`~torch.Tensor.transpose`
:meth:`~torch.Tensor.transpose_`
:meth:`~torch.Tensor.zero_`


Sparse tensor functions
+++++++++++++++++++++++

.. autofunction:: torch.sparse_coo_tensor
   :noindex:
.. autofunction:: torch.sparse.sum
.. autofunction:: torch.sparse.addmm
.. autofunction:: torch.sparse.mm
.. autofunction:: torch.sspaddmm
.. autofunction:: torch.hspmm
.. autofunction:: torch.smm
.. autofunction:: torch.sparse.softmax
.. autofunction:: torch.sparse.log_softmax

Other functions
+++++++++++++++

The following :mod:`torch` functions support :ref:`sparse COO tensors <sparse-coo-docs>`:

:func:`~torch.cat`
:func:`~torch.dstack`
:func:`~torch.empty`
:func:`~torch.empty_like`
:func:`~torch.hstack`
:func:`~torch.index_select`
:func:`~torch.is_complex`
:func:`~torch.is_floating_point`
:func:`~torch.is_nonzero`
:func:`~torch.is_same_size`
:func:`~torch.is_signed`
:func:`~torch.is_tensor`
:func:`~torch.lobpcg`
:func:`~torch.mm`
:func:`~torch.native_norm`
:func:`~torch.pca_lowrank`
:func:`~torch.select`
:func:`~torch.stack`
:func:`~torch.svd_lowrank`
:func:`~torch.unsqueeze`
:func:`~torch.vstack`
:func:`~torch.zeros`
:func:`~torch.zeros_like`