.. role:: hidden :class: hidden-section Automatic differentiation package - torch.autograd ================================================== .. automodule:: torch.autograd .. currentmodule:: torch.autograd .. autofunction:: backward .. autofunction:: grad .. _functional-api: Functional higher level API ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. warning:: This API is experimental. This section contains the higher level API for the autograd that builds on the basic API above and allows you to compute jacobians, hessians, etc. This API works with user-provided functions that take only Tensors as input and return only Tensors. If your function takes other arguments that are not Tensors or Tensors for which you don't require gradients, you can use a lambda to capture them. For example, for a function ``f`` that takes three inputs, a Tensor for which we want the jacobian, another tensor that should be considered constant and a boolean flag as ``f(input, constant, flag=flag)`` you can use it as ``functional.jacobian(lambda x: f(x, constant, flag=flag), input)``. .. autofunction:: torch.autograd.functional.jacobian .. autofunction:: torch.autograd.functional.hessian .. autofunction:: torch.autograd.functional.vjp .. autofunction:: torch.autograd.functional.jvp .. autofunction:: torch.autograd.functional.vhp .. autofunction:: torch.autograd.functional.hvp .. _locally-disable-grad: Locally disabling gradient computation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: no_grad .. autoclass:: enable_grad .. autoclass:: set_grad_enabled In-place operations on Tensors ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Supporting in-place operations in autograd is a hard matter, and we discourage their use in most cases. Autograd's aggressive buffer freeing and reuse makes it very efficient and there are very few occasions when in-place operations actually lower memory usage by any significant amount. Unless you're operating under heavy memory pressure, you might never need to use them. In-place correctness checks --------------------------- All :class:`Tensor` s keep track of in-place operations applied to them, and if the implementation detects that a tensor was saved for backward in one of the functions, but it was modified in-place afterwards, an error will be raised once backward pass is started. This ensures that if you're using in-place functions and not seeing any errors, you can be sure that the computed gradients are correct. Variable (deprecated) ^^^^^^^^^^^^^^^^^^^^^ .. warning:: The Variable API has been deprecated: Variables are no longer necessary to use autograd with tensors. Autograd automatically supports Tensors with ``requires_grad`` set to ``True``. Below please find a quick guide on what has changed: - ``Variable(tensor)`` and ``Variable(tensor, requires_grad)`` still work as expected, but they return Tensors instead of Variables. - ``var.data`` is the same thing as ``tensor.data``. - Methods such as ``var.backward(), var.detach(), var.register_hook()`` now work on tensors with the same method names. In addition, one can now create tensors with ``requires_grad=True`` using factory methods such as :func:`torch.randn`, :func:`torch.zeros`, :func:`torch.ones`, and others like the following: ``autograd_tensor = torch.randn((2, 3, 4), requires_grad=True)`` Tensor autograd functions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: torch.Tensor :noindex: .. autoattribute:: grad .. autoattribute:: requires_grad .. autoattribute:: is_leaf .. automethod:: backward .. automethod:: detach .. automethod:: detach_ .. automethod:: register_hook .. automethod:: retain_grad :hidden:`Function` ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: Function :members: Context method mixins ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When creating a new :class:`Function`, the following methods are available to `ctx`. .. autoclass:: torch.autograd.function._ContextMethodMixin :members: .. _grad-check: Numerical gradient checking ^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autofunction:: gradcheck .. autofunction:: gradgradcheck Profiler ^^^^^^^^ Autograd includes a profiler that lets you inspect the cost of different operators inside your model - both on the CPU and GPU. There are two modes implemented at the moment - CPU-only using :class:`~torch.autograd.profiler.profile`. and nvprof based (registers both CPU and GPU activity) using :class:`~torch.autograd.profiler.emit_nvtx`. .. autoclass:: torch.autograd.profiler.profile :members: .. autoclass:: torch.autograd.profiler.record_function :members: .. autoclass:: torch.autograd.profiler.emit_nvtx :members: .. autofunction:: torch.autograd.profiler.load_nvprof Anomaly detection ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: detect_anomaly .. autoclass:: set_detect_anomaly