torch =================================== .. automodule:: torch Tensors ---------------------------------- .. autofunction:: is_tensor .. autofunction:: is_storage .. autofunction:: is_floating_point .. autofunction:: set_default_dtype .. autofunction:: get_default_dtype .. autofunction:: set_default_tensor_type .. autofunction:: numel .. autofunction:: set_printoptions .. autofunction:: set_flush_denormal .. _tensor-creation-ops: Creation Ops ~~~~~~~~~~~~~~~~~~~~~~ .. note:: Random sampling creation ops are listed under :ref:`random-sampling` and include: :func:`torch.rand` :func:`torch.rand_like` :func:`torch.randn` :func:`torch.randn_like` :func:`torch.randint` :func:`torch.randint_like` :func:`torch.randperm` You may also use :func:`torch.empty` with the :ref:`inplace-random-sampling` methods to create :class:`torch.Tensor` s with values sampled from a broader range of distributions. .. autofunction:: tensor .. autofunction:: sparse_coo_tensor .. autofunction:: as_tensor .. autofunction:: as_strided .. autofunction:: from_numpy .. autofunction:: zeros .. autofunction:: zeros_like .. autofunction:: ones .. autofunction:: ones_like .. autofunction:: arange .. autofunction:: range .. autofunction:: linspace .. autofunction:: logspace .. autofunction:: eye .. autofunction:: empty .. autofunction:: empty_like .. autofunction:: empty_strided .. autofunction:: full .. autofunction:: full_like .. autofunction:: quantize_per_tensor .. autofunction:: quantize_per_channel Indexing, Slicing, Joining, Mutating Ops ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: cat .. autofunction:: chunk .. autofunction:: gather .. autofunction:: index_select .. autofunction:: masked_select .. autofunction:: narrow .. autofunction:: nonzero .. autofunction:: reshape .. autofunction:: split .. autofunction:: squeeze .. autofunction:: stack .. autofunction:: t .. autofunction:: take .. autofunction:: transpose .. autofunction:: unbind .. autofunction:: unsqueeze .. autofunction:: where .. _generators: Generators ---------------------------------- .. autoclass:: torch._C.Generator :members: .. _random-sampling: Random sampling ---------------------------------- .. autofunction:: seed .. autofunction:: manual_seed .. autofunction:: initial_seed .. autofunction:: get_rng_state .. autofunction:: set_rng_state .. autoattribute:: torch.default_generator :annotation: Returns the default CPU torch.Generator .. autoattribute:: torch.cuda.default_generators :annotation: If cuda is available, returns a tuple of default CUDA torch.Generator-s. The number of CUDA torch.Generator-s returned is equal to the number of GPUs available in the system. .. autofunction:: bernoulli .. autofunction:: multinomial .. autofunction:: normal .. autofunction:: rand .. autofunction:: rand_like .. autofunction:: randint .. autofunction:: randint_like .. autofunction:: randn .. autofunction:: randn_like .. autofunction:: randperm .. _inplace-random-sampling: In-place random sampling ~~~~~~~~~~~~~~~~~~~~~~~~ There are a few more in-place random sampling functions defined on Tensors as well. Click through to refer to their documentation: - :func:`torch.Tensor.bernoulli_` - in-place version of :func:`torch.bernoulli` - :func:`torch.Tensor.cauchy_` - numbers drawn from the Cauchy distribution - :func:`torch.Tensor.exponential_` - numbers drawn from the exponential distribution - :func:`torch.Tensor.geometric_` - elements drawn from the geometric distribution - :func:`torch.Tensor.log_normal_` - samples from the log-normal distribution - :func:`torch.Tensor.normal_` - in-place version of :func:`torch.normal` - :func:`torch.Tensor.random_` - numbers sampled from the discrete uniform distribution - :func:`torch.Tensor.uniform_` - numbers sampled from the continuous uniform distribution Quasi-random sampling ~~~~~~~~~~~~~~~~~~~~~ .. autoclass:: torch.quasirandom.SobolEngine :members: :exclude-members: MAXBIT, MAXDIM :undoc-members: Serialization ---------------------------------- .. autofunction:: save .. autofunction:: load Parallelism ---------------------------------- .. autofunction:: get_num_threads .. autofunction:: set_num_threads .. autofunction:: get_num_interop_threads .. autofunction:: set_num_interop_threads Locally disabling gradient computation -------------------------------------- The context managers :func:`torch.no_grad`, :func:`torch.enable_grad`, and :func:`torch.set_grad_enabled` are helpful for locally disabling and enabling gradient computation. See :ref:`locally-disable-grad` for more details on their usage. These context managers are thread local, so they won't work if you send work to another thread using the :module:`threading` module, etc. Examples:: >>> x = torch.zeros(1, requires_grad=True) >>> with torch.no_grad(): ... y = x * 2 >>> y.requires_grad False >>> is_train = False >>> with torch.set_grad_enabled(is_train): ... y = x * 2 >>> y.requires_grad False >>> torch.set_grad_enabled(True) # this can also be used as a function >>> y = x * 2 >>> y.requires_grad True >>> torch.set_grad_enabled(False) >>> y = x * 2 >>> y.requires_grad False Math operations ---------------------------------- Pointwise Ops ~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: abs .. autofunction:: acos .. autofunction:: add .. autofunction:: addcdiv .. autofunction:: addcmul .. autofunction:: asin .. autofunction:: atan .. autofunction:: atan2 .. autofunction:: bitwise_not .. autofunction:: ceil .. autofunction:: clamp .. autofunction:: cos .. autofunction:: cosh .. autofunction:: div .. autofunction:: digamma .. autofunction:: erf .. autofunction:: erfc .. autofunction:: erfinv .. autofunction:: exp .. autofunction:: expm1 .. autofunction:: floor .. autofunction:: fmod .. autofunction:: frac .. autofunction:: lerp .. autofunction:: log .. autofunction:: log10 .. autofunction:: log1p .. autofunction:: log2 .. autofunction:: logical_not .. autofunction:: logical_xor .. autofunction:: mul .. autofunction:: mvlgamma .. autofunction:: neg .. autofunction:: pow .. autofunction:: reciprocal .. autofunction:: remainder .. autofunction:: round .. autofunction:: rsqrt .. autofunction:: sigmoid .. autofunction:: sign .. autofunction:: sin .. autofunction:: sinh .. autofunction:: sqrt .. autofunction:: tan .. autofunction:: tanh .. autofunction:: trunc Reduction Ops ~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: argmax .. autofunction:: argmin .. autofunction:: cumprod .. autofunction:: cumsum .. autofunction:: dist .. autofunction:: logsumexp .. autofunction:: mean .. autofunction:: median .. autofunction:: mode .. autofunction:: norm .. autofunction:: prod .. autofunction:: std .. autofunction:: std_mean .. autofunction:: sum .. autofunction:: unique .. autofunction:: unique_consecutive .. autofunction:: var .. autofunction:: var_mean Comparison Ops ~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: allclose .. autofunction:: argsort .. autofunction:: eq .. autofunction:: equal .. autofunction:: ge .. autofunction:: gt .. autofunction:: isfinite .. autofunction:: isinf .. autofunction:: isnan .. autofunction:: kthvalue .. autofunction:: le .. autofunction:: lt .. autofunction:: max .. autofunction:: min .. autofunction:: ne .. autofunction:: sort .. autofunction:: topk Spectral Ops ~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: fft .. autofunction:: ifft .. autofunction:: rfft .. autofunction:: irfft .. autofunction:: stft .. autofunction:: bartlett_window .. autofunction:: blackman_window .. autofunction:: hamming_window .. autofunction:: hann_window Other Operations ~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: bincount .. autofunction:: broadcast_tensors .. autofunction:: cartesian_prod .. autofunction:: cdist .. autofunction:: combinations .. autofunction:: cross .. autofunction:: diag .. autofunction:: diag_embed .. autofunction:: diagflat .. autofunction:: diagonal .. autofunction:: einsum .. autofunction:: flatten .. autofunction:: flip .. autofunction:: rot90 .. autofunction:: histc .. autofunction:: meshgrid .. autofunction:: renorm .. autofunction:: repeat_interleave .. autofunction:: roll .. autofunction:: tensordot .. autofunction:: trace .. autofunction:: tril .. autofunction:: tril_indices .. autofunction:: triu .. autofunction:: triu_indices BLAS and LAPACK Operations ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. autofunction:: addbmm .. autofunction:: addmm .. autofunction:: addmv .. autofunction:: addr .. autofunction:: baddbmm .. autofunction:: bmm .. autofunction:: chain_matmul .. autofunction:: cholesky .. autofunction:: cholesky_inverse .. autofunction:: cholesky_solve .. autofunction:: dot .. autofunction:: eig .. autofunction:: geqrf .. autofunction:: ger .. autofunction:: inverse .. autofunction:: det .. autofunction:: logdet .. autofunction:: slogdet .. autofunction:: lstsq .. autofunction:: lu .. autofunction:: lu_solve .. autofunction:: lu_unpack .. autofunction:: matmul .. autofunction:: matrix_power .. autofunction:: matrix_rank .. autofunction:: mm .. autofunction:: mv .. autofunction:: orgqr .. autofunction:: ormqr .. autofunction:: pinverse .. autofunction:: qr .. autofunction:: solve .. autofunction:: svd .. autofunction:: symeig .. autofunction:: trapz .. autofunction:: triangular_solve Utilities ---------------------------------- .. autofunction:: compiled_with_cxx11_abi .. autofunction:: result_type .. autofunction:: can_cast .. autofunction:: promote_types