Shortcuts

# Source code for torch.nn.modules.linear

import math

import torch
from torch.nn.parameter import Parameter
from .. import functional as F
from .. import init
from .module import Module
from ..._jit_internal import weak_module, weak_script_method

[docs]@weak_module
class Identity(Module):
r"""A placeholder identity operator that is argument-insensitive.

Args:
args: any argument (unused)
kwargs: any keyword argument (unused)

Examples::

>>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 20])

"""
def __init__(self, *args, **kwargs):
super(Identity, self).__init__()

@weak_script_method
def forward(self, input):
return input

[docs]@weak_module
class Linear(Module):
r"""Applies a linear transformation to the incoming data: :math:y = xA^T + b

Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: True

Shape:
- Input: :math:(N, *, H_{in}) where :math:* means any number of
additional dimensions and :math:H_{in} = \text{in\_features}
- Output: :math:(N, *, H_{out}) where all but the last dimension
are the same shape as the input and :math:H_{out} = \text{out\_features}.

Attributes:
weight: the learnable weights of the module of shape
:math:(\text{out\_features}, \text{in\_features}). The values are
initialized from :math:\mathcal{U}(-\sqrt{k}, \sqrt{k}), where
:math:k = \frac{1}{\text{in\_features}}
bias:   the learnable bias of the module of shape :math:(\text{out\_features}).
If :attr:bias is True, the values are initialized from
:math:\mathcal{U}(-\sqrt{k}, \sqrt{k}) where
:math:k = \frac{1}{\text{in\_features}}

Examples::

>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])
"""
__constants__ = ['bias']

def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()

def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)

@weak_script_method
def forward(self, input):
return F.linear(input, self.weight, self.bias)

def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)

[docs]@weak_module
class Bilinear(Module):
r"""Applies a bilinear transformation to the incoming data:
:math:y = x_1 A x_2 + b

Args:
in1_features: size of each first input sample
in2_features: size of each second input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: True

Shape:
- Input1: :math:(N, *, H_{in1}) where :math:H_{in1}=\text{in1\_features} and
:math:* means any number of additional dimensions. All but the last dimension
of the inputs should be the same.
- Input2: :math:(N, *, H_{in2}) where :math:H_{in2}=\text{in2\_features}.
- Output: :math:(N, *, H_{out}) where :math:H_{out}=\text{out\_features}
and all but the last dimension are the same shape as the input.

Attributes:
weight: the learnable weights of the module of shape
:math:(\text{out\_features}, \text{in1\_features}, \text{in2\_features}).
The values are initialized from :math:\mathcal{U}(-\sqrt{k}, \sqrt{k}), where
:math:k = \frac{1}{\text{in1\_features}}
bias:   the learnable bias of the module of shape :math:(\text{out\_features}).
If :attr:bias is True, the values are initialized from
:math:\mathcal{U}(-\sqrt{k}, \sqrt{k}), where
:math:k = \frac{1}{\text{in1\_features}}

Examples::

>>> m = nn.Bilinear(20, 30, 40)
>>> input1 = torch.randn(128, 20)
>>> input2 = torch.randn(128, 30)
>>> output = m(input1, input2)
>>> print(output.size())
torch.Size([128, 40])
"""
__constants__ = ['in1_features', 'in2_features', 'out_features', 'bias']

def __init__(self, in1_features, in2_features, out_features, bias=True):
super(Bilinear, self).__init__()
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in1_features, in2_features))

if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()

def reset_parameters(self):
bound = 1 / math.sqrt(self.weight.size(1))
init.uniform_(self.weight, -bound, bound)
if self.bias is not None:
init.uniform_(self.bias, -bound, bound)

@weak_script_method
def forward(self, input1, input2):
return F.bilinear(input1, input2, self.weight, self.bias)

def extra_repr(self):
return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
self.in1_features, self.in2_features, self.out_features, self.bias is not None
)

# TODO: PartialLinear - maybe in sparse?


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials