Shortcuts

Program Listing for File pooling.h

Return to documentation for file (torch/csrc/api/include/torch/nn/options/pooling.h)

#pragma once

#include <torch/arg.h>
#include <torch/csrc/Export.h>
#include <torch/expanding_array.h>
#include <torch/types.h>

namespace torch {
namespace nn {

template <size_t D>
struct AvgPoolOptions {
  AvgPoolOptions(ExpandingArray<D> kernel_size)
      : kernel_size_(kernel_size), stride_(kernel_size) {}

  TORCH_ARG(ExpandingArray<D>, kernel_size);

  TORCH_ARG(ExpandingArray<D>, stride);

  TORCH_ARG(ExpandingArray<D>, padding) = 0;

  TORCH_ARG(bool, ceil_mode) = false;

  TORCH_ARG(bool, count_include_pad) = true;


  TORCH_ARG(std::optional<int64_t>, divisor_override) = std::nullopt;
};

using AvgPool1dOptions = AvgPoolOptions<1>;

using AvgPool2dOptions = AvgPoolOptions<2>;

using AvgPool3dOptions = AvgPoolOptions<3>;

namespace functional {
using AvgPool1dFuncOptions = AvgPool1dOptions;
} // namespace functional

namespace functional {
using AvgPool2dFuncOptions = AvgPool2dOptions;
} // namespace functional

namespace functional {
using AvgPool3dFuncOptions = AvgPool3dOptions;
} // namespace functional

// ============================================================================

template <size_t D>
struct MaxPoolOptions {
  MaxPoolOptions(ExpandingArray<D> kernel_size)
      : kernel_size_(kernel_size), stride_(kernel_size) {}

  TORCH_ARG(ExpandingArray<D>, kernel_size);

  TORCH_ARG(ExpandingArray<D>, stride);

  TORCH_ARG(ExpandingArray<D>, padding) = 0;

  TORCH_ARG(ExpandingArray<D>, dilation) = 1;

  TORCH_ARG(bool, ceil_mode) = false;
};

using MaxPool1dOptions = MaxPoolOptions<1>;

using MaxPool2dOptions = MaxPoolOptions<2>;

using MaxPool3dOptions = MaxPoolOptions<3>;

namespace functional {
using MaxPool1dFuncOptions = MaxPool1dOptions;
} // namespace functional

namespace functional {
using MaxPool2dFuncOptions = MaxPool2dOptions;
} // namespace functional

namespace functional {
using MaxPool3dFuncOptions = MaxPool3dOptions;
} // namespace functional

// ============================================================================

template <typename output_size_t>
struct AdaptiveMaxPoolOptions {
  AdaptiveMaxPoolOptions(output_size_t output_size)
      : output_size_(output_size) {}

  TORCH_ARG(output_size_t, output_size);
};

using AdaptiveMaxPool1dOptions = AdaptiveMaxPoolOptions<ExpandingArray<1>>;

using AdaptiveMaxPool2dOptions =
    AdaptiveMaxPoolOptions<ExpandingArrayWithOptionalElem<2>>;

using AdaptiveMaxPool3dOptions =
    AdaptiveMaxPoolOptions<ExpandingArrayWithOptionalElem<3>>;

namespace functional {
using AdaptiveMaxPool1dFuncOptions = AdaptiveMaxPool1dOptions;
} // namespace functional

namespace functional {
using AdaptiveMaxPool2dFuncOptions = AdaptiveMaxPool2dOptions;
} // namespace functional

namespace functional {
using AdaptiveMaxPool3dFuncOptions = AdaptiveMaxPool3dOptions;
} // namespace functional

// ============================================================================

template <typename output_size_t>
struct AdaptiveAvgPoolOptions {
  AdaptiveAvgPoolOptions(output_size_t output_size)
      : output_size_(output_size) {}

  TORCH_ARG(output_size_t, output_size);
};

using AdaptiveAvgPool1dOptions = AdaptiveAvgPoolOptions<ExpandingArray<1>>;

using AdaptiveAvgPool2dOptions =
    AdaptiveAvgPoolOptions<ExpandingArrayWithOptionalElem<2>>;

using AdaptiveAvgPool3dOptions =
    AdaptiveAvgPoolOptions<ExpandingArrayWithOptionalElem<3>>;

namespace functional {
using AdaptiveAvgPool1dFuncOptions = AdaptiveAvgPool1dOptions;
} // namespace functional

namespace functional {
using AdaptiveAvgPool2dFuncOptions = AdaptiveAvgPool2dOptions;
} // namespace functional

namespace functional {
using AdaptiveAvgPool3dFuncOptions = AdaptiveAvgPool3dOptions;
} // namespace functional

// ============================================================================

template <size_t D>
struct MaxUnpoolOptions {
  MaxUnpoolOptions(ExpandingArray<D> kernel_size)
      : kernel_size_(kernel_size), stride_(kernel_size) {}

  TORCH_ARG(ExpandingArray<D>, kernel_size);

  TORCH_ARG(ExpandingArray<D>, stride);

  TORCH_ARG(ExpandingArray<D>, padding) = 0;
};

using MaxUnpool1dOptions = MaxUnpoolOptions<1>;

using MaxUnpool2dOptions = MaxUnpoolOptions<2>;

using MaxUnpool3dOptions = MaxUnpoolOptions<3>;

// ============================================================================

namespace functional {

template <size_t D>
struct MaxUnpoolFuncOptions {
  MaxUnpoolFuncOptions(ExpandingArray<D> kernel_size)
      : kernel_size_(kernel_size), stride_(kernel_size) {}

  TORCH_ARG(ExpandingArray<D>, kernel_size);

  TORCH_ARG(ExpandingArray<D>, stride);

  TORCH_ARG(ExpandingArray<D>, padding) = 0;

  TORCH_ARG(std::optional<std::vector<int64_t>>, output_size) = std::nullopt;
};

using MaxUnpool1dFuncOptions = MaxUnpoolFuncOptions<1>;

using MaxUnpool2dFuncOptions = MaxUnpoolFuncOptions<2>;

using MaxUnpool3dFuncOptions = MaxUnpoolFuncOptions<3>;

} // namespace functional

// ============================================================================

template <size_t D>
struct FractionalMaxPoolOptions {
  FractionalMaxPoolOptions(ExpandingArray<D> kernel_size)
      : kernel_size_(kernel_size) {}

  TORCH_ARG(ExpandingArray<D>, kernel_size);

  TORCH_ARG(std::optional<ExpandingArray<D>>, output_size) = std::nullopt;

  using ExpandingArrayDouble = torch::ExpandingArray<D, double>;
  TORCH_ARG(std::optional<ExpandingArrayDouble>, output_ratio) = std::nullopt;

  TORCH_ARG(torch::Tensor, _random_samples) = Tensor();
};

using FractionalMaxPool2dOptions = FractionalMaxPoolOptions<2>;

using FractionalMaxPool3dOptions = FractionalMaxPoolOptions<3>;

namespace functional {
using FractionalMaxPool2dFuncOptions = FractionalMaxPool2dOptions;
} // namespace functional

namespace functional {
using FractionalMaxPool3dFuncOptions = FractionalMaxPool3dOptions;
} // namespace functional

// ============================================================================

template <size_t D>
struct LPPoolOptions {
  LPPoolOptions(double norm_type, ExpandingArray<D> kernel_size)
      : norm_type_(norm_type),
        kernel_size_(kernel_size),
        stride_(kernel_size) {}

  TORCH_ARG(double, norm_type);

  // the size of the window to take an average over
  TORCH_ARG(ExpandingArray<D>, kernel_size);

  // the stride of the window. Default value is `kernel_size`
  TORCH_ARG(ExpandingArray<D>, stride);

  // when True, will use `ceil` instead of `floor` to compute the output shape
  TORCH_ARG(bool, ceil_mode) = false;
};

using LPPool1dOptions = LPPoolOptions<1>;

using LPPool2dOptions = LPPoolOptions<2>;

using LPPool3dOptions = LPPoolOptions<3>;

namespace functional {
using LPPool1dFuncOptions = LPPool1dOptions;
} // namespace functional

namespace functional {
using LPPool2dFuncOptions = LPPool2dOptions;
} // namespace functional

namespace functional {
using LPPool3dFuncOptions = LPPool3dOptions;
} // namespace functional

} // namespace nn
} // namespace torch

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources