• Docs >
  • torchaudio.compliance.kaldi
Shortcuts

torchaudio.compliance.kaldi

The useful processing operations of kaldi can be performed with torchaudio. Various functions with identical parameters are given so that torchaudio can produce similar outputs.

Functions

spectrogram

torchaudio.compliance.kaldi.spectrogram(waveform: torch.Tensor, blackman_coeff: float = 0.42, channel: int = - 1, dither: float = 0.0, energy_floor: float = 1.0, frame_length: float = 25.0, frame_shift: float = 10.0, min_duration: float = 0.0, preemphasis_coefficient: float = 0.97, raw_energy: bool = True, remove_dc_offset: bool = True, round_to_power_of_two: bool = True, sample_frequency: float = 16000.0, snip_edges: bool = True, subtract_mean: bool = False, window_type: str = 'povey') → torch.Tensor[source]

Create a spectrogram from a raw audio signal. This matches the input/output of Kaldi’s compute-spectrogram-feats.

Parameters
  • waveform (Tensor) – Tensor of audio of size (c, n) where c is in the range [0,2)

  • blackman_coeff (float, optional) – Constant coefficient for generalized Blackman window. (Default: 0.42)

  • channel (int, optional) – Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: -1)

  • dither (float, optional) – Dithering constant (0.0 means no dither). If you turn this off, you should set the energy_floor option, e.g. to 1.0 or 0.1 (Default: 0.0)

  • energy_floor (float, optional) – Floor on energy (absolute, not relative) in Spectrogram computation. Caution: this floor is applied to the zeroth component, representing the total signal energy. The floor on the individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: 1.0)

  • frame_length (float, optional) – Frame length in milliseconds (Default: 25.0)

  • frame_shift (float, optional) – Frame shift in milliseconds (Default: 10.0)

  • min_duration (float, optional) – Minimum duration of segments to process (in seconds). (Default: 0.0)

  • preemphasis_coefficient (float, optional) – Coefficient for use in signal preemphasis (Default: 0.97)

  • raw_energy (bool, optional) – If True, compute energy before preemphasis and windowing (Default: True)

  • remove_dc_offset (bool, optional) – Subtract mean from waveform on each frame (Default: True)

  • round_to_power_of_two (bool, optional) – If True, round window size to power of two by zero-padding input to FFT. (Default: True)

  • sample_frequency (float, optional) – Waveform data sample frequency (must match the waveform file, if specified there) (Default: 16000.0)

  • snip_edges (bool, optional) – If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. (Default: True)

  • subtract_mean (bool, optional) – Subtract mean of each feature file [CMS]; not recommended to do it this way. (Default: False)

  • window_type (str, optional) – Type of window (‘hamming’|’hanning’|’povey’|’rectangular’|’blackman’) (Default: 'povey')

Returns

A spectrogram identical to what Kaldi would output. The shape is (m, padded_window_size // 2 + 1) where m is calculated in _get_strided

Return type

Tensor

fbank

torchaudio.compliance.kaldi.fbank(waveform: torch.Tensor, blackman_coeff: float = 0.42, channel: int = - 1, dither: float = 0.0, energy_floor: float = 1.0, frame_length: float = 25.0, frame_shift: float = 10.0, high_freq: float = 0.0, htk_compat: bool = False, low_freq: float = 20.0, min_duration: float = 0.0, num_mel_bins: int = 23, preemphasis_coefficient: float = 0.97, raw_energy: bool = True, remove_dc_offset: bool = True, round_to_power_of_two: bool = True, sample_frequency: float = 16000.0, snip_edges: bool = True, subtract_mean: bool = False, use_energy: bool = False, use_log_fbank: bool = True, use_power: bool = True, vtln_high: float = - 500.0, vtln_low: float = 100.0, vtln_warp: float = 1.0, window_type: str = 'povey') → torch.Tensor[source]

Create a fbank from a raw audio signal. This matches the input/output of Kaldi’s compute-fbank-feats.

Parameters
  • waveform (Tensor) – Tensor of audio of size (c, n) where c is in the range [0,2)

  • blackman_coeff (float, optional) – Constant coefficient for generalized Blackman window. (Default: 0.42)

  • channel (int, optional) – Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: -1)

  • dither (float, optional) – Dithering constant (0.0 means no dither). If you turn this off, you should set the energy_floor option, e.g. to 1.0 or 0.1 (Default: 0.0)

  • energy_floor (float, optional) – Floor on energy (absolute, not relative) in Spectrogram computation. Caution: this floor is applied to the zeroth component, representing the total signal energy. The floor on the individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: 1.0)

  • frame_length (float, optional) – Frame length in milliseconds (Default: 25.0)

  • frame_shift (float, optional) – Frame shift in milliseconds (Default: 10.0)

  • high_freq (float, optional) – High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (Default: 0.0)

  • htk_compat (bool, optional) – If true, put energy last. Warning: not sufficient to get HTK compatible features (need to change other parameters). (Default: False)

  • low_freq (float, optional) – Low cutoff frequency for mel bins (Default: 20.0)

  • min_duration (float, optional) – Minimum duration of segments to process (in seconds). (Default: 0.0)

  • num_mel_bins (int, optional) – Number of triangular mel-frequency bins (Default: 23)

  • preemphasis_coefficient (float, optional) – Coefficient for use in signal preemphasis (Default: 0.97)

  • raw_energy (bool, optional) – If True, compute energy before preemphasis and windowing (Default: True)

  • remove_dc_offset (bool, optional) – Subtract mean from waveform on each frame (Default: True)

  • round_to_power_of_two (bool, optional) – If True, round window size to power of two by zero-padding input to FFT. (Default: True)

  • sample_frequency (float, optional) – Waveform data sample frequency (must match the waveform file, if specified there) (Default: 16000.0)

  • snip_edges (bool, optional) – If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. (Default: True)

  • subtract_mean (bool, optional) – Subtract mean of each feature file [CMS]; not recommended to do it this way. (Default: False)

  • use_energy (bool, optional) – Add an extra dimension with energy to the FBANK output. (Default: False)

  • use_log_fbank (bool, optional) – If true, produce log-filterbank, else produce linear. (Default: True)

  • use_power (bool, optional) – If true, use power, else use magnitude. (Default: True)

  • vtln_high (float, optional) – High inflection point in piecewise linear VTLN warping function (if negative, offset from high-mel-freq (Default: -500.0)

  • vtln_low (float, optional) – Low inflection point in piecewise linear VTLN warping function (Default: 100.0)

  • vtln_warp (float, optional) – Vtln warp factor (only applicable if vtln_map not specified) (Default: 1.0)

  • window_type (str, optional) – Type of window (‘hamming’|’hanning’|’povey’|’rectangular’|’blackman’) (Default: 'povey')

Returns

A fbank identical to what Kaldi would output. The shape is (m, num_mel_bins + use_energy) where m is calculated in _get_strided

Return type

Tensor

mfcc

torchaudio.compliance.kaldi.mfcc(waveform: torch.Tensor, blackman_coeff: float = 0.42, cepstral_lifter: float = 22.0, channel: int = - 1, dither: float = 0.0, energy_floor: float = 1.0, frame_length: float = 25.0, frame_shift: float = 10.0, high_freq: float = 0.0, htk_compat: bool = False, low_freq: float = 20.0, num_ceps: int = 13, min_duration: float = 0.0, num_mel_bins: int = 23, preemphasis_coefficient: float = 0.97, raw_energy: bool = True, remove_dc_offset: bool = True, round_to_power_of_two: bool = True, sample_frequency: float = 16000.0, snip_edges: bool = True, subtract_mean: bool = False, use_energy: bool = False, vtln_high: float = - 500.0, vtln_low: float = 100.0, vtln_warp: float = 1.0, window_type: str = 'povey') → torch.Tensor[source]

Create a mfcc from a raw audio signal. This matches the input/output of Kaldi’s compute-mfcc-feats.

Parameters
  • waveform (Tensor) – Tensor of audio of size (c, n) where c is in the range [0,2)

  • blackman_coeff (float, optional) – Constant coefficient for generalized Blackman window. (Default: 0.42)

  • cepstral_lifter (float, optional) – Constant that controls scaling of MFCCs (Default: 22.0)

  • channel (int, optional) – Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: -1)

  • dither (float, optional) – Dithering constant (0.0 means no dither). If you turn this off, you should set the energy_floor option, e.g. to 1.0 or 0.1 (Default: 0.0)

  • energy_floor (float, optional) – Floor on energy (absolute, not relative) in Spectrogram computation. Caution: this floor is applied to the zeroth component, representing the total signal energy. The floor on the individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: 1.0)

  • frame_length (float, optional) – Frame length in milliseconds (Default: 25.0)

  • frame_shift (float, optional) – Frame shift in milliseconds (Default: 10.0)

  • high_freq (float, optional) – High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (Default: 0.0)

  • htk_compat (bool, optional) – If true, put energy last. Warning: not sufficient to get HTK compatible features (need to change other parameters). (Default: False)

  • low_freq (float, optional) – Low cutoff frequency for mel bins (Default: 20.0)

  • num_ceps (int, optional) – Number of cepstra in MFCC computation (including C0) (Default: 13)

  • min_duration (float, optional) – Minimum duration of segments to process (in seconds). (Default: 0.0)

  • num_mel_bins (int, optional) – Number of triangular mel-frequency bins (Default: 23)

  • preemphasis_coefficient (float, optional) – Coefficient for use in signal preemphasis (Default: 0.97)

  • raw_energy (bool, optional) – If True, compute energy before preemphasis and windowing (Default: True)

  • remove_dc_offset (bool, optional) – Subtract mean from waveform on each frame (Default: True)

  • round_to_power_of_two (bool, optional) – If True, round window size to power of two by zero-padding input to FFT. (Default: True)

  • sample_frequency (float, optional) – Waveform data sample frequency (must match the waveform file, if specified there) (Default: 16000.0)

  • snip_edges (bool, optional) – If True, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame_length. If False, the number of frames depends only on the frame_shift, and we reflect the data at the ends. (Default: True)

  • subtract_mean (bool, optional) – Subtract mean of each feature file [CMS]; not recommended to do it this way. (Default: False)

  • use_energy (bool, optional) – Add an extra dimension with energy to the FBANK output. (Default: False)

  • vtln_high (float, optional) – High inflection point in piecewise linear VTLN warping function (if negative, offset from high-mel-freq (Default: -500.0)

  • vtln_low (float, optional) – Low inflection point in piecewise linear VTLN warping function (Default: 100.0)

  • vtln_warp (float, optional) – Vtln warp factor (only applicable if vtln_map not specified) (Default: 1.0)

  • window_type (str, optional) – Type of window (‘hamming’|’hanning’|’povey’|’rectangular’|’blackman’) (Default: "povey")

Returns

A mfcc identical to what Kaldi would output. The shape is (m, num_ceps) where m is calculated in _get_strided

Return type

Tensor

resample_waveform

torchaudio.compliance.kaldi.resample_waveform(waveform: torch.Tensor, orig_freq: float, new_freq: float, lowpass_filter_width: int = 6) → torch.Tensor[source]

Resamples the waveform at the new frequency. This matches Kaldi’s OfflineFeatureTpl ResampleWaveform which uses a LinearResample (resample a signal at linearly spaced intervals to upsample/downsample a signal). LinearResample (LR) means that the output signal is at linearly spaced intervals (i.e the output signal has a frequency of new_freq). It uses sinc/bandlimited interpolation to upsample/downsample the signal.

https://ccrma.stanford.edu/~jos/resample/Theory_Ideal_Bandlimited_Interpolation.html https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56

Parameters
  • waveform (Tensor) – The input signal of size (c, n)

  • orig_freq (float) – The original frequency of the signal

  • new_freq (float) – The desired frequency

  • lowpass_filter_width (int, optional) – Controls the sharpness of the filter, more == sharper but less efficient. We suggest around 4 to 10 for normal use. (Default: 6)

Returns

The waveform at the new frequency

Return type

Tensor

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources