
PyTorch 2: Faster Machine Learning Through Dynamic
Python Bytecode Transformation and Graph

Compilation
Jason Ansel

Meta

Edward Yang

Meta

Horace He

Meta

Natalia Gimelshein

OpenAI

Animesh Jain

Meta

Michael Voznesensky

Meta

Bin Bao

Meta

Peter Bell

Quansight

David Berard

Meta

Evgeni Burovski

Quansight

Geeta Chauhan

Meta

Anjali Chourdia

Meta

Will Constable

Meta

Alban Desmaison

Meta

Zachary DeVito

Meta

Elias Ellison

Meta

Will Feng

Meta

Jiong Gong

Intel

Michael Gschwind

Meta

Brian Hirsh

Meta

Sherlock Huang

Meta

Kshiteej Kalambarkar

Quansight

Laurent Kirsch

Meta

Michael Lazos

Meta

Mario Lezcano

Quansight

Yanbo Liang

Meta

Jason Liang

Meta

Yinghai Lu

Meta

CK Luk

Meta

Bert Maher

Meta

Yunjie Pan

University of Michigan

Christian Puhrsch

Meta

Matthias Reso

Meta

Mark Saroufim

Meta

Marcos Yukio Siraichi

Quansight

Helen Suk

Meta

Michael Suo

Meta

Phil Tillet

OpenAI

Eikan Wang

Intel

Xiaodong Wang

Meta

William Wen

Meta

Shunting Zhang

Meta

Xu Zhao

Meta

Keren Zhou

OpenAI

George Mason University

Richard Zou

Meta

Ajit Mathews

Meta

Gregory Chanan

Meta

Peng Wu

Meta

Soumith Chintala

Meta

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0385-0/24/04

https://doi.org/10.1145/3620665.3640366

Abstract
This paper introduces two extensions to the popular PyTorch

machine learning framework, TorchDynamo and TorchIn-

ductor, which implement the torch.compile feature released

in PyTorch 2. TorchDynamo is a Python-level just-in-time

(JIT) compiler that enables graph compilation in PyTorch

programs without sacrificing the flexibility of Python. It

achieves this by dynamically modifying Python bytecode

https://orcid.org/0009-0007-5207-2179
https://orcid.org/0009-0008-0621-7872
https://orcid.org/0009-0004-1133-816X
https://orcid.org/0009-0002-9867-5075
https://orcid.org/0000-0001-6777-9168
https://orcid.org/0009-0000-0539-0667
https://orcid.org/0009-0008-8090-7660
https://orcid.org/0009-0003-6824-4343
https://orcid.org/0009-0005-4954-1849
https://orcid.org/0000-0001-8149-0483
https://orcid.org/0009-0003-0830-7330
https://orcid.org/0009-0005-4276-2227
https://orcid.org/0009-0001-7846-744X
https://orcid.org/0009-0002-4359-1974
https://orcid.org/0009-0002-8863-1503
https://orcid.org/0009-0005-8337-3498
https://orcid.org/0009-0009-6406-4699
https://orcid.org/0009-0009-0845-5628
https://orcid.org/0009-0001-4963-4915
https://orcid.org/0009-0004-1239-3320
https://orcid.org/0009-0005-7558-5570
https://orcid.org/0009-0009-8198-4526
https://orcid.org/0009-0007-4121-2308
https://orcid.org/0009-0007-8706-9447
https://orcid.org/0009-0006-8893-2276
https://orcid.org/0009-0003-2111-0014
https://orcid.org/0009-0008-5462-1466
https://orcid.org/0009-0003-1993-8648
https://orcid.org/0009-0009-9938-8327
https://orcid.org/0009-0004-6873-645X
https://orcid.org/0009-0002-9351-431X
https://orcid.org/0009-0002-3925-967X
https://orcid.org/0000-0002-1582-5860
https://orcid.org/0009-0009-2612-6588
https://orcid.org/0000-0001-5377-8607
https://orcid.org/0009-0007-6048-3189
https://orcid.org/0009-0000-5454-3113
https://orcid.org/0009-0007-0636-8710
https://orcid.org/0009-0009-2648-5193
https://orcid.org/0000-0001-5436-9952
https://orcid.org/0009-0009-1502-9520
https://orcid.org/0009-0008-8370-5554
https://orcid.org/0000-0003-2906-8677
https://orcid.org/0000-0002-7977-3182
https://orcid.org/0009-0000-9597-1405
https://orcid.org/0009-0003-4199-0434
https://orcid.org/0009-0006-0635-4725
https://orcid.org/0000-0003-2913-3280
https://orcid.org/0000-0003-2147-9850
https://doi.org/10.1145/3620665.3640366

before execution and extracting sequences of PyTorch oper-

ations into an FX graph, which is then JIT compiled using

one of many extensible backends. TorchInductor is the de-

fault compiler backend for TorchDynamo, which translates

PyTorch programs into OpenAI’s Triton for GPUs and C++

for CPUs. Results show that TorchDynamo is able to capture

graphs more robustly than prior approaches while adding

minimal overhead, and TorchInductor is able to provide a

2.27× inference and 1.41× training geometric mean speedup

on an NVIDIA A100 GPU across 180+ real-world models,

which outperforms six other compilers. These extensions

provide a new way to apply optimizations through compilers

in eager mode frameworks like PyTorch.

ACM Reference Format:
Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Ani-

mesh Jain, Michael Voznesensky, Bin Bao, Peter Bell, David Berard,

Evgeni Burovski, Geeta Chauhan, Anjali Chourdia, Will Consta-

ble, Alban Desmaison, Zachary DeVito, Elias Ellison, Will Feng,

Jiong Gong, Michael Gschwind, Brian Hirsh, Sherlock Huang, Kshi-

teej Kalambarkar, Laurent Kirsch, Michael Lazos, Mario Lezcano,

Yanbo Liang, Jason Liang, Yinghai Lu, CK Luk, Bert Maher, Yunjie

Pan, Christian Puhrsch, Matthias Reso, Mark Saroufim, Marcos

Yukio Siraichi, Helen Suk, Michael Suo, Phil Tillet, Eikan Wang,

Xiaodong Wang, William Wen, Shunting Zhang, Xu Zhao, Keren

Zhou, Richard Zou, Ajit Mathews, Gregory Chanan, Peng Wu,

and Soumith Chintala. 2024. PyTorch 2: Faster Machine Learning

Through Dynamic Python Bytecode Transformation and Graph

Compilation. In 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2 (ASPLOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New

York, NY, USA, 18 pages. https://doi.org/10.1145/3620665.3640366

1 Introduction
Modernmachine learning frameworks can be divided into ea-
ger mode frameworks, such as PyTorch [32] and JAX [8], and

graph mode frameworks, such as TensorFlow [1], Caffe [25],

Theano [5], and CNTK [37]. Eager mode frameworks use

an imperative define-by-run [47] approach where a machine

learning model is represented as code that is executed each

time one wants to run the model. Graph mode frameworks

take a more declarative define-and-run [47] approach, where

they expose a graph building API that requires users to first

construct a graph and then later execute that graph.

Users of machine learning frameworks, and especially re-

searchers, have shown an overwhelming preference for the

eager programming model [22]. The eager mode model is

easier to understand and can be debugged using standard

tools such as print and pdb in Python [23]. This user pref-

erence towards eager mode has caused traditionally graph

mode frameworks to switch to eager mode programming

models [4].

The downside of eagermode frameworks is that theymake

it harder to apply graph-level optimizations through compil-

ers. The framework only has visibility of a single operator at a

time, and thus cannot automatically perform optimizations,

like fusion or scheduling, that cross operator boundaries.

To address this, there have been attempts to allow graph

capture in PyTorch through record/replay [17, 34], Python

parsing [17], and lazy evaluation [39]. Unfortunately, these

approaches have sacrificed much of the usability that draws

users to PyTorch. Record/replay is unsound and can produce

incorrect behavior [17]. Python parsing works for simple

programs, but has not been able to replicate the complex

semantics of all of Python, so results will show it fails on

over half of real-world models. Lazy evaluation incurs high

run-time overheads and adds latency to kernel launches. Ad-

ditionally, an exclusively graph mode backend for PyTorch is

intractable for some models. Due to the flexibility provided

by PyTorch, many model authors take advantage of features

that do not easily map to graphs, such as: dictionaries, lists,

custom classes, third party libraries (numpy, logging, etc),

disk/network, multiprocessing, exceptions, and handwritten

kernels.

This paper presents two open source extensions to Py-

Torch: TorchDynamo and TorchInductor. These extensions
are behind the torch.compile feature introduced in PyTorch

2 and officially released in March 2023. TorchDynamo is a

Python-level JIT compiler designed to allow graph compila-

tion in PyTorch programs while retaining the full flexibility

of Python. TorchDynamo hooks into the Python frame eval-

uation API [9] in CPython to dynamically modify Python

bytecode right before it is executed. It rewrites Python byte-

code in order to extract sequences of PyTorch operations into

an FX graph [34] which is then just-in-time compiled with

many extensible backends. It creates this FX graph through

bytecode analysis and is designed to generate smaller graph

fragments that can be mixed with Python execution to get

the best of both worlds: usability and performance.

TorchInductor is a new compiler backend for TorchDy-

namo. It translates PyTorch programs into OpenAI’s Tri-

ton [46] for GPUs and C++/OpenMP [15] for CPUs. TorchIn-

ductor is able to support the flexibility and dynamism of Py-

Torch by using similar abstractions to PyTorch eager mode.

It introduces a new define-by-run loop-level intermediate

representation (IR) to make it easy to add new operator low-

erings. Additionally, it is implemented in Python, so it is easy

for PyTorch users to extend and modify to meet their needs.

Experimental results show that TorchDynamo is able to

capture graphs more robustly than prior approaches while

adding minimal overhead. TorchDynamo is able to capture a

single whole-program graph for most models and can grace-

fully fall back to partial graphs when needed. Measurements

show TorchInductor produces faster code on average than six

other PyTorch compiler backends. Performance comparisons

include both training and inference, CPU and GPU, float32

and float16, and three large benchmark suites containing

180+ full-sized models taken from real-world applications.

2

https://doi.org/10.1145/3620665.3640366

2 Prior Attempts at PyTorch Graph Capture
Graph capture in PyTorch presents unique challenges when

compared to graph mode frameworks [1, 25, 5, 37], where

the user is restricted to only using constructs that are repre-

sentable in the graph. With PyTorch and other eager mode

frameworks, the user is free to embed arbitrary code, includ-

ing non-PyTorch libraries, inside their models. This results

in frequent conversion from PyTorch Tensors to Python

types (via .item(), .tolist(), etc), usage of external libraries

(numpy, logging, etc), and usage of Python constructs (classes,

closures, exceptions, control flow, etc) that do not map well

to a fixed graph abstraction. Due to this mismatch between

the flexibility provided by Python/PyTorch, and the inflexibil-

ity of graph representations, prior attempts at graph capture

in PyTorch have needed to place restrictions on the user

experience. While this tension between flexibility and repre-

sentation is solved by TorchDynamo, we examine prior art

in the space to provide context and background.

2.1 torch.jit.trace
torch.jit.trace uses record/replay with example inputs to

produce a TorchScript [17] graph. The recording is done at

the PyTorch dispatcher level, which is inside the C++ portion

of PyTorch and used to dispatch operators to device-specific

kernels and for autograd. Because the recording is done in

C++, torch.jit.trace does not capture any control flow in

Python. Consider this example:

def example1(x):

if len(torch.nonzero(x)) > 1:

return x + 1

return x - 1

With example input torch.tensor([0, 0]), torch.jit.trace

would capture a graph equivalent to:

def example1_incorrect_capture(x):

torch.nonzero(x)

return x - 1

Since the path through the program is specialized on the

example input, a different input (such as torch.tensor([1,1]))

will give incorrect results. Additionally, any non-PyTorch

operators (such as external libraries, prints, logging, side

effects, etc.) will be omitted from the captured graph.

2.2 torch.jit.script
torch.jit.script also constructs a TorchScript [17] graph,

but does so by parsing the Python AST and performing static

analysis. It is able to capture example1 above correctly and,

unlike torch.jit.trace, it is a sound approach that should

not produce incorrect results.

The major challenge torch.jit.script faces is that it is

trying to reimplement all of Python as a static language. This

approach is all or nothing: encountering an unimplemented

component of Python makes the entire program unfit for

capture. Emulating all of Python statically is a daunting

task and, in practice, torch.jit.script only supports a subset

of Python. Experimental results show that torch.jit.script

works only about half the time on real-world models in the

TorchBench benchmark suite, and anecdotally we have heard

stories of it taking weeks or months to “torchscript” large

models, which leads to a frustrating user experience.

2.3 Lazy Tensors
Lazy Tensors were introduced in the PyTorch/XLA [42, 39]

project, which is primarily focused on supporting Google

TPUs [26] with PyTorch. Lazy Tensors is a C++ level graph

capture technology. Every iteration, it defers execution of

operations to accumulate a graph and then sends the accumu-

lated graph to the XLA [45] compiler. By hashing this graph,

Lazy Tensors can avoid recompilation when the captured

graph is identical across iterations. While this approach is

effective and sound, it has a few major downsides:

• Higher overheads: Lazy Tensors incurs additional work
when compared to PyTorch eager. Besides running

the same Python code and PyTorch dispatcher stack

that eager does, it must maintain additional graph data

structures that incur added runtime costs.

• Introduced delays: PyTorch eager issues the first kernel

on the first operation of the model, after which point

host-side code is run in parallel with kernels on the

GPU or accelerator thus hiding overheads. In contrast,

Lazy Tensors doesn’t issue the first kernel until the

model’s code has finished executing, resulting in added

delays before the first kernel is issued and after any

operation that requires a round trip to the CPU (which

are common in real-world models). Thus, Lazy Tensors

often serializes host execution with GPU/accelerator

utilization, which amplifies host side overheads. Mod-

els, loss logging, and optimizers need to be modified

to work around this issue.

• Recompilation: Whenever the captured graph has a

new hash, Lazy Tensors must recompile. This can lead

to some pathological cases where recompilation hap-

pens frequently.

The PyTorch/XLA project has built [10] an integration with

TorchDynamo which uses a hybrid of both Lazy Tensors

and TorchDynamo. This integration hides the overheads of

Lazy Tensors by only running Lazy Tensors once, rather than

every iteration, and using TorchDynamo to figure out when

recapture is needed. The PyTorch/XLA results later in the

paper use this integration.

2.4 torch.fx.symbolic_trace
torch.fx.symbolic_trace [34] is the newest of these systems

and introduced the FX graph format that is shared by Torch-

Dynamo. It takes a similar record/replay-based approach to

torch.jit.trace, but does its tracing at the Python level as

opposed to at the PyTorch C++ dispatcher level. It runs the

3

user code using a Proxy Python object to record its behavior

and uses the torch_function [3] extension point in PyTorch.

By recording higher up at the Python level, symbolic_trace

is able to capture many operations that torch.jit.trace can-

not. Since it records using Proxy objects instead of real ten-

sors, it is able to detect many cases where torch.jit.trace

would be incorrect, e.g., when trying to read sizes or values

from Proxy tensors or when using them in control flow, such

as example1 above. It also suffers from the all-or-nothing lim-

itation of many solutions described above. For example, in

the control flow case above, the user is still forced to rewrite

the code they want to trace.

Unfortunately, torch.fx.symbolic_trace is still unsound

and can produce incorrect results. Consider this example,

which increments a global variable and calls a function not

dependent on the function input:

def example3(x):

global call_count

call_count += 1

return torch.rand(10) + x

If one runs torch.fx.symbolic_trace on this example it pro-

duces a graph equivalent to:

def example3_incorrect_capture(x):

return _tensor_constant0 + x

The call to torch.rand got removed and the result of it got

burned into the graph as a fixed constant. Subsequent uses

of the graph will not get new randomness, but instead reuse

whatever value was generated during capture. This type

of incorrect capture can be difficult to debug and may go

unnoticed by users.

The call_count operations are completely lost because

they did not interact with the Proxy object x. Instead, the

call_count got incremented to 1 during tracing and will not

be incremented when the graph is called. This is also an

example of something that is not supported by any of the

graph representations. Nearly all graphs formats for ma-

chine learning have no concept of a Python global, so even

if this could be captured, it is not supported by downstream

backend compilers.

2.5 torch.onnx.export
ONNX [31] export is not actually a graph capturemechanism,

but some people confuse it for one, so we include it here for

completeness. Internally, ONNX export uses torch.jit.trace

and torch.jit.script (Section 2.1 and 2.2), so it faces all the

same limitations imposed by those systems. Additionally, the

conversion from TorchScript to the ONNX format can fail

due to ONNX not supporting all PyTorch operators. Thus,

the set of models supported by ONNX is a subset of those

supported by TorchScript.

The ONNX team is working on an integration with Torch-

Dynamo that will replace TorchScript with a direct Torch-

Dynamo integration. Once finished, this will increase the

number of models ONNX works on.

Figure 1. Overview of how TorchDynamo modifies the

CPython interpreter to capture FX graphs

2.6 Comparison To Graph Capture In JAX
JAX [8] largely doesn’t face the same challenges being solved

by TorchDynamo. The initial design of JAX was heavily

coupled to the design of XLA [45], and JAX has been backed

by XLA from its inception. This has the effect of forcing

JAX programs to conform to the constraints built into the

design coming up the stack from XLA. Thus, JAX uses a

simpler capture mechanism, and expects users to write their

programs to meet the constraints of that capture mechanism.

As an example, jax.jit does not support data-dependent

Python control flow and requires user code to be functionally

pure.

In contrast, PyTorch started as an eager-only framework

without any compiler-minded constraints built into its de-

sign. A large corpus of models has grown on top of PyTorch,

most of which were written without any regard to how hard

to capture and compile they would be.

On an implementation level, the capture mechanism in

JAX is similar to torch.fx.symbolic_trace (Section 2.4), but

somewhat simpler, because JAX programs are purely func-

tional and thus do not need to worry about state. The Torch

FX paper [34] contains a more detailed comparison with

JAX.

3 TorchDynamo Design and
Implementation

TorchDynamo takes a fundamentally different approach

from prior graph capture systems in PyTorch. Rather than

trying to remove or replace Python, TorchDynamo tries to

work with CPython by just-in-time (JIT) compiling Python

bytecode. TorchDynamo is a Python bytecode to Python

bytecode translator, where it extracts PyTorch operations

from the original bytecode and replaces them with calls to

compiled artifacts that fuse many PyTorch operations to-

gether. Figure 1 provides an overview of how TorchDynamo

4

operates and will be explained in the remainder of this sec-

tion.

3.1 Usage API
The primary API introduced in this paper is torch.compile.

It can be used either by calling it on a PyTorch Module or as

a function decorator. It has the following keyword options:

• backend: allows the user to provide a custom compile

function which takes a torch.fx.Graph and a list of

example inputs and returns a Python callable. This

defaults to TorchInductor, but can also be set to one

of many builtin backends or a user-defined backend.

• options: An optional dictionary of backend-specific

configuration flags.

• mode: Shorthand strings for a predefined set of op-

tions: "default", "reduce-overhead", or "max-autotune".

When you run a module with torch.compile, the module

is executed with the modified CPython behavior shown in

Figure 1. Specifically, a custom CPython frame evaluation

hook will rewrite the bytecode of of each Python function

being executed in order to extract and compile sequences

of PyTorch operations. This bytecode rewriting process is

cached, but the analysis relies on certain dynamic properties

of the program that we use guards to check on subsequent

calls.

3.2 CPython Frame Evaluation Hook
PEP 523 [9] introduced the frame evaluation API into the

CPython interpreter. A frame is the data structure in CPython

used to represent a function call. This is the main extension

point used by TorchDynamo, and it was designed to facilitate

just in time (JIT) compilers and debuggers in Python. PEP 523

added an eval_frame function pointer to PyInterpreterState,

which allows overriding the core function used to interpret

a single function call in CPython. Whenever CPython calls

a function, it first creates a PyFrameObject, then it calls this

user defined eval_frame hook. By default, eval_frame points

to _PyEval_EvalFrameDefault, which contains the main inter-

preter loop for CPython. TorchDynamo modifies eval_frame

to replace this standard CPython interpreter loop with one

that performs JIT compilation of Python frames.

The custom eval frame function installed by TorchDy-

namo performs the following operations:

• Check if the frame should be skipped due to filename

exclusion, previous failures in analysis (which mark

the frame to be skipped), or exceeded cache size limits.

Filename exclusions are used for common libraries,

like Python standard libraries and numpy, which will

not contain PyTorch operations. For skipped files, call

_PyEval_EvalFrameDefault on the original bytecode and

return.

• Check if the frame has previously been compiled and

is cached; if so, execute the generated guard function

(Section 3.3) for each entry in the cache. If a guard func-

tion returns True, run the matching cached compiled

bytecode with _PyEval_EvalFrameDefault and return.

• Perform symbolic analysis (instruction by instruction)

of the function bytecode to extract an FX graph [34],

guards, and side effects. This analysis can stop partway

through the function if it encounters an unsupported

operation.

• Compile the FX graph with a user-defined compiler

function specified by the backend= argument provided

to torch.compile.

• Generate and compile a single Python function that

checks all of the guards. It returns True if the guards

pass and the existing compiled artifact can be reused.

• If the analysis did not reach the end of the function,

generate resume_at_XX continuation functions. Contin-

uation functions run the remainder of the function in

a new frame and are described in Section 3.8.

• Generate new Python bytecode. This new bytecode

will: 1) call the compiled FX graph; 2) store and recon-

struct the local/stack state; 3) perform side effects the

original function should have had, see Section 3.7; 4)

either return or implement a graph break by falling

back to the original bytecode and calling the generated

continuation function(s).

• Install the generated Python bytecode and guard func-

tion in the cache, run the generated bytecode with

_PyEval_EvalFrameDefault, and return.

3.3 Guards
Guards are the mechanism TorchDynamo uses to recheck

dynamic properties used by JIT compilation to determine is

a cached compilation can be reused. TorchDynamo gener-

ates a guard function for each transformed PyCodeObject that

returns True if it is safe to reuse a compiled artifact. Both

the guards and the transformed code are stored using the

_PyCode_SetExtra extension point introduced in PEP 523 [9].

Guards are accumulated during analysis and can point to

variables originating from globals/locals or nested within

Python data structures. At the time of writing there were

30 different types of guards. Guards include: checking many

torch.Tensor properties, Python types, constant specializa-

tion, attributes, dicts/lists/tuples, nn.Module instances, and

global PyTorch state. The guard system spans across Torch-

Dynamo, AOTAutograd, and TorchInductor. Any layer can

introduce guards to protect specializations. Guards are all

independent checks and do not interact with each other

beyond deduplication.

3.4 Symbolic Evaluation
A fundamental part of TorchDynamo is the symbolic Python

bytecode evaluatorwhich is responsible for analyzing Python

bytecode and modeling effects of each instruction. Symbolic

evaluation contains data structures that keep track of: 1)

5

stack state; 2) local variables; 3) exception contexts; 4) accu-

mulated FX graph [34]; 5) accumulated guards; and 6) side

effects. The algorithm operates one Python bytecode at a

time and contains a function corresponding to every Python

bytecode instruction type.

At the start of symbolic evaluation, function arguments

are examined and converted to a symbolic representation,

VariableTracker. If bytecodes access data structures such as

class attributes or global variables, new symbolic represen-

tations for these constructs are added lazily. This representa-

tion is discussed more in Section 3.5. The symbolic evaluator

starts at the first bytecode instruction of the function, and

continues processing the function one bytecode at a time.

The soundness of this analysis can be shown via induction:

as long each individual bytecode is processed correctly, the

overall algorithm will be correct.

As an example, suppose the first instruction was LOAD_FAST,

a Python bytecode that pushes a local variable on to the

stack. The handler for LOAD_FAST will take the representation

variable from the symbolic local variables and push it on to

the symbolic stack data structure. The handler for BINARY_ADD,

will pop two symbolic variables off the stack then push their

result on to the stack. The result is computed depending on

the types of those variables and the dispatch will vary based

on those types. If the value represents a PyTorch tensor, then

a new add node will be added to the FX graph [34], and a new

symbolic tensor pointing to the result node will be created.

3.5 Modeling Python Data Structures
Many semantics of Python are in libraries and data structures,

so any Python analysis must model the behavior of these

different types. To analyze the behavior of each variable or

stack entry, TorchDynamo has a class hierarchy that models

common behaviors of different data types. Each of these data

structures is a subclass of VariableTracker. Notable types of

variable trackers include:

• TensorVariable represents a torch.Tensor. It does not
store an underlying tensor value, but instead stores a

fx.Proxy which points into the partially constructed

FX graph [34] as well as a “fake” tensor (see Section 5)

that represents the metadata of a tensor without its

actual data.

• ConstDictVariable and DataClassVariable are used to

represent key/value pairs where the keys are con-

stant strings and the values can be anything, including

nested dicts/lists.

• ListVariable and TupleVariable represent list/tuple and
can contain any other type of symbolic variable.

• UserFunctionVariable and UserMethodVariable represent
user defined functions that can be inlined. They also

support functions constructed dynamically containing

closures.

• UserDefinedClassVariable represent user-defined classes
and UserDefinedObjectVariable represents instances.We

lazily specialize on these as their attributes are ac-

cessed, and track mutation on them (Section 3.7).

There are many other variable tracker types that represent

other situations. In addition to type-specific data, every

VariableTracker instance also contains a set of guards, which

are initialized when they are created and propagated through

operations via union. Additionally, each instance also tracks

where it came from so that it can be loaded or mutated in

output bytecode.

3.6 Inlining, Control Flow, and Closures
Function calls can either happen directly from user code, or

implicitly through magic methods such as __getitem__. To

collect bigger graphs, TorchDynamo will attempt to inline

function calls and flatten programs. When a function call

is encountered, TorchDynamo first creates a checkpoint of

the current symbolic state. Next, it recursively tries to sym-

bolically evaluate the called functions, passing in any input

symbolic state and recording any changes that are made. If

this recursive analysis hits a case that would cause a graph

break (Section 3.8) or other errors, TorchDynamo rolls back

to the symbolic state before the function call and generates

a graph break on that function call. Otherwise, the recur-

sive analysis returns and the analysis of the parent function

continues.

Most cases of control flow in Python bytecode are opti-

mized away and handled through specialization. For example,

when iterating over a list of torch.nn.Module, TorchDynamo

will guard that the list doesn’t change and unroll the loop.

For control flow based on the type, size, and shape of tensors,

TorchDynamo will guard on those properties and remove

the control flow. In less common cases where there is control

flow that cannot be removed (for example, branching on the

value of a tensor rather than the metadata), TorchDynamo

will generate a graph break that will trigger the branch byte-

code to run in CPython, and analysis will resume after the

jump.

Another challenge is closures. Consider this example:

def closure_example(x):

y = torch.sigmoid(x)

return lambda z: y + z

Here the variable 𝑦 is in a closure which is represented by

what CPython calls a cell, which adds a layer of indirection

to allow variables in closures to be mutated. There are a

number of different cases of closures that TorchDynamo

must handle:

• Cell variables created outside the captured region must

be accessed differently than other variables. If they are

accessed from the top-level function, they can be ac-

cessed by generating the LOAD_DEREF and STORE_DEREF

bytecodes. When inlining, this bytecode cannot be

6

used and instead TorchDynamo generates code to read-

/write directly from the inlined function cell, for exam-

ple fn.__closure__[0].cell_contents. If the content of

a cell is mutated, TorchDynamo tracks the mutation

in the same way as other mutations (Section 3.7).

• Cell variables both created and destroyed within the

captured region are the easiest to handle andmost com-

mon. In this case, TorchDynamo statically optimizes

away the closure.

• Cell variables that are created in the captured region,

but escape the frame are the most difficult to handle.

In this case, TorchDynamo will optimize away all uses

of the closure inside the captured region. Then, at the

very end in the generated bytecode, it will create any

needed cells and Python function objects to return.

From the outside, callers will not be able to tell that

the returned closure was created differently than the

original program.

3.7 Mutation and Side Effects
Python functions sometimes have side effects. TorchDynamo

handles side effects by deferring them until after the FX

graph [34] has been called, then generating output bytecode

that applies all side effects at the end. To do this, TorchDy-

namo has a side effects data structure that tracks all side

effects that the original code would have. If the code tries to

read a value that would have been mutated by a pending side

effect, it instead reads that pending value. After the graph

is generated, a garbage collection pass removes side effects

that didn’t escape the analysis context, and TorchDynamo

generates output code to apply the needed side effects. Han-

dling side effects this way results in multiple writes to the

same value being collapsed into a single write. TorchDynamo

supports the following types of side effects:

• Writes to global variables result in a STORE_GLOBAL byte-

code if the target global is in the same file. If it is in a

different file (because of inlining), code is generated

to mutate the global in the other module.

• Writes to attributes (such as on classes) are handled

similarly and mapped to STORE_ATTR in output byte-

codes. We use the source on the VariableTracker to

determine how to load a reference to the object that

must be mutated.

• Writes to cells/closures are tracked and handled in a

number of ways (see Section 3.6).

• Class construction is handled by creating a placeholder

symbolic object, inlining the __init__ method, and

tracking all the attribute mutation on that placeholder

object. If the object is live at the end of the function,

the output bytecode will create the object (bypassing

the constructor) and set the needed attributes.

• Dictionary and list mutation can also cause side effect

if the dict/list was passed in as an input or loaded from

a global/attribute. The VariableTracker representations

of dict/lists will guard on the initial symbolic state

of these objects, then symbolically track all changes

through the entire function. The captured FX graph [34]

will have all of these operations optimized away. In

the output bytecode, a new dict/list will be created to

match the final state and the original list object will

be mutated to match that object. This recreation is not

needed for lists/dicts that do not escape the captured

region because their mutations cannot be observed,

and therefore they can be completely removed.

3.8 Graph Breaks and Continuation Functions
When TorchDynamo encounters a Python bytecode it cannot

handle, for example a call to an external library, it generates

what we call a graph break to split the bytecode being an-

alyzed into multiple pieces. Essentially, TorchDynamo will

mix compiled fragments into the original Python code to

get a hybrid execution. Any pending partial FX graph [34]

is compiled. In the output code when the partial graph will

be called, the unsupported bytecode will be executed, and

then we will recursively use TorchDynamo to analyze the

remainder of the function. To trigger this recursive analysis,

TorchDynamo generates one or more continuation functions

which take the form:

def resume_at_X(... livevars ...):

... restore try/except/stack state ...

JUMP_ABSOLUTE X

... original function bytecode ...

This continuation function looks very similar to the orig-

inal function except for a few changes: 1) the arguments

are changed to reflect whatever variables are live across the

graph break; 2) a prefix is added to restore the stack/excep-

tion state, which may also be passed in as an argument; 3) a

JUMP_ABSOLUTE instruction is created so execution resumes in

the middle of the function.

TorchDynamo will either generate one of these functions,

or two of these functions in the case of control flow (all

control flow bytecodes have exactly two branches), to con-

tinue execution right after the unsupported bytecode. The

advantage of structuring continuations as Python functions

is that it will recursively trigger TorchDynamo through the

frame evaluation API. When TorchDynamo processes a con-

tinuation function, it treats it exactly the same as any other

Python function.

3.9 AOTAutograd
AOTAutograd is a reusable component in PyTorch that is

called by many PyTorch compiler backends to add training

support and use shared operator decompositions. TorchDy-

namo captures the forwards of a model, but, to support train-

ing, we also need to generate the backwards pass. In Pytorch

eager, the backwards graph is generated dynamically using a

tape-based autograd [32]. AOTAutograd turns the forwards

7

graph into a forwards and backwards graph in a way that

supports partial program graphs.

AOTAutograd works by running the PyTorch eager mode

autograd engine on fake tensor inputs and recording a joint

forwards and backwards graph. Data-dependent operations

do not work with fake tensors (since there is no backing

data), so we graph break on these operations in TorchDy-

namo and run them outside the graph. AOTAutograd then

uses a min-cut algorithm [55] to split this joint graph into

separate forward and backward graphs in a way that opti-

mizes for memory usage. As part of this min-cut algorithm,

we apply backend-specific optimizations to rematerialize cer-

tain activations that are cheap to recompute in the backwards

graph.

As part of AOTAutograd, other dispatcher-level transfor-

mations are also applied to the graph. Decompositions are

where AOTAutograd maps some PyTorch operators into a

smaller set of more primitive operators. AOTAutograd also

makes the graph purely functional by removing operations

that perform mutation and replacing them with their func-

tional equivalents.

4 TorchInductor Design and
Implementation

While TorchDynamo solves the graph capture problem in

PyTorch, to be useful it must be paired with a backend com-

piler that can take the captured FX graph [34] and generate

fast code from it. We created TorchInductor as a reference

compiler backend. It is designed to be general purpose and

can be used both directly by users and as a starting point for

other backends.

4.1 Design Principles and Key Technologies
Before diving into the design of TorchInductor, let’s first

discuss some principles and technologies that motivated its

design:

PyTorch Native: PyTorch made many design choices that

differ from other frameworks and compilers: Tensors have

exposed strides that can be manipulated by users, aliasing

views are commonplace, and both data and metadata can be

mutated in-place. Any compiler with a dramatically different

model will face many challenges in representing PyTorch

programs.Wewanted TorchInductor to share similar abstrac-

tions to PyTorch eager to allow support of all of PyTorch,

with a thin translation layer.

Python First: The majority of PyTorch users are most

comfortable in Python. The Python parts of PyTorch get far

more community contribution than the C++ parts of PyTorch.

We chose to implement TorchInductor in Python to make it

easy to understand and hackable by PyTorch users.

Breadth First: Rather than focusing on a narrow set of

models (e.g. ResNet/BERT) that are already well studied, we

intentionally put an early focus on supporting a wide variety

of operators, hardware, and optimization. This helped make

TorchInductor a general purpose compiler that can scale to

many scenarios. This is also why the early focus was on

training, since training is a much harder compiler problem

than inference.

Reuse State-Of-The-Art Languages: For an output lan-

guage, we took inspiration from how PyTorch users were

writing high performance kernels. We observed rapidly in-

creasing popularity of the OpenAI Triton [46] DSL for writ-

ing GPU kernels, and those kernels are often outperforming

other compilers and state-of-the-art libraries. High perfor-

mance CPU kernels are typicallywritten in C++/OpenMP [15].

TorchInductor generates both Triton and C++ as output code,

which allows us to leverage the technology of those projects

as well as generate output code that is understandable by

PyTorch users.

4.2 Decompositions
Rather than implementing lowerings for all operators in Py-

Torch to TorchInductor’s IR, many operators in PyTorch are

decomposed into a simpler set of operators that are easier to

handle. These decompositions happen using AOTAutograd

(Section 3.9), which is called by TorchInductor with a dictio-

nary of desired decompositions. Decompositions are written

as a Python implementation of a PyTorch operator in terms

of other operators, for example the following decomposes

log2 into log and mul:

log2_scale = 1 / math.log(2)

@register_decomposition(torch.ops.aten.log2)

def log2(x):

return torch.log(x) * log2_scale

This decomposition will be recursively traced down and nor-

malized, and can possibly trigger additional decompositions

in that process until a fixed point is reached. Note that the

active decomposition set must not contain cycles.

At the time of writing, TorchInductor used 191 decom-

positions (387 including overloads). The majority of these

decompositions are not specific to TorchInductor and are

available for any other backend to use via the torch._decomp

module, while some are TorchInductor specific.

4.3 Lowerings and Define-By-Run Loop-Level IR
The next phase of compilation is lowering from an FX graph

of PyTorch operations into TorchInductor’s define-by-run

IR. A define-by-run IR means the IR uses executable Python

code to define the bodies of loops, giving TorchInductor’s

IR much of the power of full Python, removing the need for

a large amount of boilerplate, and allowing lowerings to be

written concisely.

8

def inner_fn_buf0(index):

i0, i1 = index

tmp0 = ops.load("arg0_1", i0 * s1 + i1)

tmp1 = ops.log(tmp0)

tmp2 = ops.constant(1.4426950408889634, torch.float32)

tmp3 = ops.mul(tmp1, tmp2)

return tmp3

buf0_ir = TensorBox(StorageBox(ComputedBuffer(

name='buf0',

layout=FixedLayout('cuda', torch.float32,

size=[s0, s1], stride=[s1, 1]),

data=Pointwise(inner_fn=inner_fn_buf0,

ranges=[s0, s1], ...))))

Figure 2. TorchInductor IR for torch.log2 on a 2D tensor.

Lowering is done by symbolically interpreting the FX

graph and applying lowering functions which do the conver-

sion for a single operator. At the time of writing, TorchInduc-

tor has lowerings for 433 PyTorch operators (1605 including

overloads). If an unknown operator is encountered, it is auto-

matically converted into a fallback kernel node which runs

the original PyTorch code.

In the example IR shown in Figure 2, inner_fn_buf0 is a

Python function that defines how to compute a single ele-

ment of the tensor buf0 in terms of calls to TorchInductor’s

primitive operators in the ops.* namespace. The function

takes a list of SymPy [28] symbols (i0 and i1) representing

the symbolic coordinates of the element to be computed.

SymPy symbols s0 and s1 represent the sizes of the tensor to

be computed and are used for both sizes and strides. These

size symbols are captured in a Python closure and registered

on the graph object.

TensorBox and StorageBox are abstractions that match Py-

Torch torch.Tensor and torch.Storage objects and allow the

handling of views, aliasing, and mutation during the lower-

ing process. ComputedBuffer represents a tensor that will be

computed using generated code (in contrast to ones created

via fallback kernels or inputs). Pointwise represents that the

ComputedBuffer is a data parallel pointwise computation. The

IR also supports Reduction and Scatter for handling other

types of operators.

The key advantage of this IR is that it is easy to construct

because it has the full power of Python. One can compose

different IR nodes together and embed logic within them.

The example above would not be initially constructed as a

single flat function, but rather many smaller function clo-

sures defined in the lowering process. The function created

for ops.mulwill call into another function created for ops.log,

which calls into another function created for loading the

input argument.

The way to compile and analyze this IR rests in the virtu-

alized namespace for ops.*, which can be dynamically over-

ridden to perform different functions. To perform analysis

on this IR, we make ops point to an analysis pass which can

perform actions like record memory accesses or high/low

watermarks for strength reduction optimizations. To perform

codegen with this IR, we make ops point to something which

writes out Triton or C++ code. To transform this IR, we make

use of FX tracing, which gives access to graph representation

for these Python functions.

At the time of writing, the loop-level TorchInductor IR

consisted of 54 primitive operators:

• ops.load and ops.store access Tensor memory from a

provided buffer name and a SymPy index specifying a

symbolic memory location.

• ops.reduction operates like ops.store where the reduc-
tion happens implictly inside the write. It combines

stored values along the reduction dimension of the cur-

rent node using a supplied reduction type. Supported

reduction types are: argmin, argmax, any, max, min,

prod, sum, xor_sum, and welford_combine [50].

• ops.index_expr converts from SymPy expressions used

for indexing into values used for compute.

• ops.indirect_indexing converts from computed values

into SymPy expressions used for indexing by introduc-

ing a new SymPy variable bound dynamically.

• ops.masked implements conditional execution. It takes

a condition and a Python function (recursively using

the same IR) with no args. This gets mapped to masks

in Triton and conditionals in C++.

• ops.load_seed, ops.rand, ops.randn, and ops.randint64
are used for computing random numbers.

• The remaining ops are elementwise math operations.

4.4 Scheduling
The scheduling phase of TorchInductor determines which

operators get fused, what order kernels run in, and does

memory planning for buffer removal and/or reuse. Sched-

uling starts by converting every buffer in the IR into a sub-

class of BaseSchedulerNode. SchedulerNode represents a stan-

dard kernel that TorchInductor will codegen the body of.

ExternKernelSchedulerNode represents calls to library code or

user-defined kernels. Additionally, NopKernelSchedulerNode

maps to nothing, but is used to add dependency edges to

ensure the ordering of kernels (for example, a concatenate
kernel which has been handled by making producers write

directly to the combined buffer). Finally, a FusedSchedulerNode

represents a set of two or more SchedulerNodes fused into a

single kernel.

Next, the scheduler converts the memory read/write sets

of each kernel into dependency edges between nodes. De-

pendency edges are annotated with the symbolic memory

address being read. Symbolic memory addresses are impor-

tant in determining which fusions are legal. For example,

if one kernel writes buf0 in forwards order, but a consumer

reads in reverse order (using ops.load("buf0", s0 - 1 - i0)),

then those nodes cannot be fused.

9

Fusion is controlled by two key functions:

• Scheduler.can_fuse(node1, node2) returns True if two
nodes can be fused together. This checks dependency

edges, and also checks many other properties to ensure

correctness of a fusion. There are some heuristics here

as well, for example, if config.aggressive_fusion=False,

then can_fuse will prevent fusion of nodes that do not

share any common memory accesses. There is also

backend specific logic here, for example, TorchInduc-

tor supports reduction-broadcast-reduction fusions for

Triton but not C++.

• Scheduler.score_fusion(node1, node2) is used to order

different fusion possibilities. Some fusions are mutu-

ally exclusive, so TorchInductor chooses the one with

the higher score. The fusion score orders fusions by:

1) the category of the fusion (e.g. pointwise/reduc-

tion/template); 2) estimated bytes of memory traffic

saved by the fusion; and 3) shorter distance between

nodes in the original graph

In a loop, until no additional fusions remain (since some

fusions can open additional fusion opportunities), TorchIn-

ductor will perform the following greedy algorithm: 1) find

all fusion opportunities; 2) score each of the fusion opportu-

nities and sort by that score; 3) for each fusion opportunity,

check if that fusion remains legal and if so apply it. When

two nodes are fused, any pending fusion opportunities point-

ing to the constituent nodes are updated to point to the new

fused node.

4.5 Triton Code Generation
Triton codegen is responsible for mapping TorchInductor’s

IR to output Triton [46] kernels. Figure 3 shows the code

generated for the log2 example above. This kernel operates

on a block of XBLOCK elements at a time. If the number of

elements is not a multiple of XBLOCK, some elements may be

masked off at the end. During codegen, we simplify indexing.

For example, the 2D strided load in the IR is converted to

a contiguous load in this case. Codegen is also responsible

for common subexpression elimination (CSE), which is done

via a cache while printing lines of code and assigning in-

termediate variable names starting with tmp. The pointwise

decorator encodes boilerplate code used to facilitate block

size heuristics, auto-tuning, and ahead-of-time kernel com-

pilation. The decorator is the type of kernel being generated

(pointwise, reduction, or template), and its arguments are

required metadata about the kernel like data alignments.

When generating reduction kernels, TorchInductor has

two modes of codegen. For smaller reductions, it will gener-

ate a persistent reductionwhere the entire reduction is loaded

in a single block and retained in registers/shared memory;

in this case reductions map directly to Triton reduction op-

erators. For larger reductions, TorchInductor generates a

@pointwise(...)

@triton.jit

def kernel(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):

xoffset = tl.program_id(0) * XBLOCK

xindex = xoffset + tl.arange(0, XBLOCK)[:]

xmask = xindex < xnumel

x0 = xindex

tmp0 = tl.load(in_ptr0 + x0, xmask)

tmp1 = tl.log(tmp0)

tmp2 = 1.4426950408889634

tmp3 = tmp1 * tmp2

tl.store(out_ptr0 + x0, tmp3, xmask)

Figure 3. Generated Triton code for Figure 2.

loop using an entire block as an accumulator with a call to a

Triton reduction at the end of the loop.

For more complex operations (matmuls and convolutions),

TorchInductor has its own template system for generating

Triton code that mixes handwritten Triton with generated

Triton. Templates are written using Jinja [29] with helper

methods to interact with TorchInductor’s codegen system.

4.6 C++ Code Generation
For the CPU backend, TorchInductor generates C++ with

OpenMP [15]. Within the C++ backend there are two vari-

ants, a vectorized variant and a non-vectorized variant. The

vectorized variant performs tiling and maps most opera-

tions to the at::vec::Vectorized class included in the Py-

Torch source code. This class operates on 16 elements at

a time, which is the same way standard PyTorch kernels

are vectorized and supports multiple SIMD instruction sets.

The non-vectorized variant generates relatively standard

C++ code using many C++ standard template library [24]

(STL) functions. Both of these variants are parallelized us-

ing #pragma omp for annotations, with some heuristics to

decide how many levels of loops to parallelize. Reductions

are mapped to the OpenMP reduction annotation if the re-

duction dimension loop is parallelized, and a C++ loop with

accumulator otherwise.

4.7 Wrapper Codegen
Wrapper codegen is responsible for generating the code that

calls the kernels from Triton, C++, and external sources.

It also does tensor size calculations and handles memory

allocation and deallocation. There are two different wrapper

codegen implementations, one that generates Python code,

and another that generates C++ code. The Python backend

is more flexible and supports some corner cases that the C++

one does not, while the C++ one is lower overhead.

When enabled with mode="reduce-overhead", TorchInduc-

tor uses CUDA Graphs [20] to completely eliminate the over-

head from wrapper code. CUDA Graphs records and replays

kernel launches at the CUDA driver level and is lower over-

head than even the C++ wrapper code. To ensure soundness,

CUDA Graphs is only used when safety requirements are

10

met and is automatically disabled in some cases (for example

with dynamic shapes, non-CUDA tensors, etc).

4.8 Related Deep Learning Compilers
There is lots of exciting work in the deep learning com-

piler space. Since most PyTorch users use GPUs, our main

reason for selecting Triton [46] as an output target was its

proven ability to generate kernels faster than handwritten

libraries [30, 13, 43] with simple input code. Very few compil-

ers have been able to do that consistently, and many widely

used deep learning compilers simply call those libraries di-

rectly without trying to compete in GPU codegen for com-

plex kernels.

Many compilers use designs inspired by Halide [33], in-

cluding: TVM [12], nvFuser [36], and NNC [60]. These de-

signs have a split semantics language and scheduling lan-

guage that allow exploring different scheduleswithout chang-

ing the semantics of the program. Researchers have explored

many different ways of expressing the search space [18,

38, 48, 51, 58, 7, 59, 19] and searching that space automati-

cally [57, 11, 54, 56, 6].

XLA [45] is the compiler behind TensorFlow [2] and JAX [8].

XLA provides multiple levels of IR including a high level IR,

HLO, that has become a standard for TPUs [26] and sim-

ilar accelerators. Many newer compilers are emerging in

the MLIR [27] ecosystem, including IREE [44] (now part of

OpenXLA [45]). The latest version of Triton [46] also uses

MLIR for its internal representation.

5 Dynamic Shapes
Deep learning compilers commonly only work for static

shapes, that is to say, they produce compiled programs which

only work for a single specific configuration of input shapes,

and must recompile if any input shape changes. This as-

sumption works well for the majority of commonly run deep

learning models today, but there are a few situations where

it is insufficient:

• Some dimensions, such as batch size or sequence length,

may vary. For example, an inference service perform-

ing adaptive batching will execute inference requests

with varying batch sizes depending on how many re-

quests it received within its batching window. We may

also want to consider padding out variable-size se-

quences only to the maximum sequence length within

a batch, which may vary from batch to batch.

• Some models exhibit data-dependent output shapes,
that is to say, the size of their outputs and intermedi-

ates may depend on the actual input data which may

vary across runs. For example, detection models may

first generate a variable number of potential bounding

boxes before running a more expensive image recog-

nition model to identify if the subject is in a bounding

box. The number of bounding boxes is data-dependent.

• One particularly important case of data-dependent

shapes occurs when dealing with sparse representa-

tions, such as sparse tensors, jagged tensors, and graph

neural networks. In all of these cases, the amount of

data to be processed depends on the sparse structure

of the problem, which will typically vary in a data-

dependent way.

In supporting dynamic shapes, we chose not to support

dynamic rank programs, e.g., programs whose inputs tensors

change in dimensionality, as this pattern rarely occurs in

real-world deep learning programs, and it avoids the need

to reason inductively over symbolic lists of shapes.

5.1 Symbolic Shape Guards
The use of straight line traces in TorchDynamo was mo-

tivated by the need to reuse preexisting code written in

Python/C++ targeting the PyTorch API. We continue this

philosophy with dynamic shapes: unlike a fully symbolic

system which might capture both branches of a conditional,

we always pick one branch and specialize our trace under
the assumption that this trace will only be reused when the

assumptions hold. To do this, we maintain a size hint for
every symbolic size saying what its concrete value was on

the first input that triggered the just-in-time compilation.

When we perform a condition on the shape of a tensor, we

consult the hint to find out which branch to take and add a

guard.

This greatly simplifies the symbolic shape formulas we

produce, as we do not need to represent conditionals, but it

means we have a much more involved system for managing

guards. Consider, for example, the following program:

def f(x, y):

z = torch.cat([x, y])

if z.size(0) > 2:

return z.mul(2)

return z.add(2)

The final IR wewill compile with TorchInductor will either

be torch.cat([x, y]).add(2) or torch.cat([x, y]).mul(2) (with

the condition flattened away), but to determine which branch

we are in, we would need to know the size of z, an intermedi-

ate. Because TorchDynamomust know up-front if a compiled

trace is valid (we do not support bailouts, like some JIT com-

pilers), we must be able to reduce z.size(0) to an expression

in terms of the inputs, x.size(0) + y.size(0). This is done

by writing meta functions for all operators in PyTorch. Meta

functions propagate size information to the output of a ten-

sor without actually performing computation on the node.

At the time of writing, coverage for meta functions was 2657

out of 3028 PyTorch ops (including overloads), which covers

the vast majority of real-world models since there is a long

tail of rarely/never used operators. There is also mechanism

for defining your own meta functions for custom ops.

11

5.2 Optimizing Dynamic Shapes Reasoning
A major motivation of dynamic shapes is to reduce compile

time, as a compiler which supports only static shapes must

recompile a kernel for every possible combination of possi-

ble input shapes. However, reasoning over symbolic shapes

comes with its own costs: in the limit, the shape expressions

for output tensors may be quite complicated. We employ a

variety of strategies to reduce the performance impact of

symbolic shapes reasoning:

• Our default API for dynamic shapes does not require

any user annotation: we assume that all inputs are po-

tentially dynamic, model weights are static, and we in-

fer the true dynamism by stepping through the model

and analyzing the interactions between the two. We

also support a mode assume_static_by_default which

forces all input dimensions to be assumed static un-

less a user explicitly marks them as dynamic with

mark_dynamic(tensor, dim).

• Code in PyTorch often performs tests on whether or

not a size of a variable is zero or one; for example,

when constructing a tensor, PyTorch computes if it is

contiguous. A zero element tensor is always contigu-

ous, so we always test if each dimension of a tensor is

zero. Instead of forcing our symbolic reasoning system

to rediscover this fact every trace, we instead proac-

tively 0/1 specialize: if an input size is 0 or 1, instead

of assigning it a symbolic variable, we treat it as a con-

stant and add an appropriate guard. Specializing on

1 is important to capture broadcasting semantics in

PyTorch and performance optimizations. Importantly,

we can make a negative inference when we do allo-

cate a symbolic variable: any symbolic variable must
not equal 0/1, and so if we test if it is equal to 0/1, we

can evaluate the expression to false without having to

introduce a additional guard.

• As we process the user program, we incrementally

simplify our symbolic expressions as we learn more

facts from guards. Our current implementation simpli-

fies unification and divisibility on the fly, and we also

use SymPy [28] to help us determine if a requested

guard is already statically known, in which case we

can eliminate it.

5.3 Hint-Free (Unbacked) Symbolic Integers
To resolve control flow, we check the actual value of a sym-

bolic integer to determine which branch to take and guard

on. Unbacked symbolic integers arise when a size variable

emerges from a data-dependent operation like .nonzero()

or .item() and the actual value is unknown. It is illegal to

perform control flow on these symbolic integers, so we must

graph break on these operations.

Naively implemented, this is too restrictive and results in

too many graph breaks. The most important enhancements

to work around these are: 1) On tensor creation, PyTorch

precomputes data about a tensor; for example, when using

empty_strided to create a tensor, it will sort the strides and

determine whether the tensor is non-overlapping and dense.

Sorts produce a lot of guards. However, it is more common

to produce a tensor directly with a higher-level API like

empty, which is guaranteed to produce a non-overlapping

and dense tensor. We modified PyTorch to avoid needlessly

recomputing these properties. 2) Even if nontrivial compute

is needed, sometimes a property is never used. Making these

precomputed properties lazy allows us to avoid guarding on

unused properties. 3) It is generally unknown whether or not

data within an integer tensor may be negative. However, we

provide an API constrain_range whereby a user can specify

that a size is bounded above and below by known limits.

6 Experimental Results
We run our evaluation on three different benchmark suites.

TorchBench [14] is a benchmark suite containing a diverse

set of models taken from open source repositories selected

fromhighly cited projects as ranked by Paperswith Code [35].

HuggingFace [53] is a popular library for Transformer [49]

models. TIMM [52] is a popular library containing vision

models in PyTorch. To turn the last two libraries into a bench-

mark suite, we selected representative models covering every

category of model available.

Our benchmarking infrastructure is open source [40] in

the hope that other publications will use it. Additional re-

sults can be found in the TorchInductor Performance Dash-

board [41], including: per-model performance, different TorchIn-

ductor settings, and daily updates for PyTorch nightly builds.

Experiments were run on an NVIDIA A100 GPU, CUDA 11.6,

and an Intel Xeon 8275CL CPU. Experiments were repeated

100 times to reduce noise, with 3 warm up iterations. We ap-

plied a timeout of 30 minutes per model and count timeouts

as failures. TorchInductor was run with a PyTorch nightly

build from 8/30/2023, with max-autotune, freezing, and cud-

agraphs enabled. Other versions used are: nvFuser 2.0; NNC

2.0; Hidet 0.2.2; TVM 0.11.1; ONNX Runtime (ONNXRT)

1.14.1; and PyTorch/XLA 2.1. For training experiments, we

measure a single step of both the forwards and backwards

pass excluding the optimizer.

6.1 TorchDynamo’s Ability to Capture Graphs
The first section of Table 1 shows experimental results com-

paring TorchDynamo to TorchScript [17] in terms of their

ability to capture different benchmark suites. For Hugging-

Face, TorchScript fails on every model because HuggingFace

models returns a ModelOutput container class that TorchScript

does not support. Most TIMMmodels work with TorchScript

because the maintainers of TIMM use TorchScript in their

workflows and have put in effort to adapt their models. On

TorchBench, TorchDynamo works on more than twice as

12

TorchBench HuggingFace TIMM

Model Count 80 46 62

Works with TorchDynamo 74 (93%) 46 (100%) 62 (100%)

Compare with TorchScript [17] 36 (45%) 0 (0%) 61 (98%)

Operators Captured 91.8% 99.8% 100%

Mean Operators per Graph 252.8 612.6 450.7

Mean Graphs per Model 21.1 7.7 1

Models with 0 graph breaks 52 (70%) 41 (89%) 62 (100%)

Models with 1 to 9 graph breaks 6 (8%) 1 (2%) 0 (0%)

Models with 10+ graph breaks 16 (22%) 4 (9%) 0 (0%)

Table 1. TorchDynamo statistics from each benchmark suite,

measured using float32 inference on an NVIDIA A100 GPU.

Inference Training

TorchDynamo 5% 1%

Lazy Tensors 38% 90%

Lazy Tensors + cross-iteration pipelining 31% 86%

Table 2. Overheads (lower is better) as a percentage of eager
PyTorch execution time for graph capture. This experiment

uses the same kernels as eager PyTorch, so overheads are

graph capture cost only. Measured using float32 TorchBench

on an NVIDIA V100 GPU.

many models as TorchScript. TorchBench is the most repre-

sentative of the three benchmark suites for graph capture

comparison because it is made up of models taken from

diverse sources.

The second section of Table 1 provides statistics about

the quality of graphs captured by TorchDynamo, normalized

as a percentage of working models. Unlike prior systems,

which were all-or-nothing, TorchDynamo can capture par-

tial programs and multiple graphs. TorchDynamo is able

to capture a single whole-program graph most of the time,

and even when there are graph breaks, typical graphs are

hundreds of operators in size. The most common reason for

graph breaks are: usage of non-PyTorch libraries such as

numpy [21]; conversion to Python types such as tolist();

and data-dependent control flow operations. There is sup-

port for compiling numpy operations with torch.compile,

which is not enabled for this experiment.

6.2 Overheads of Graph Capture
Table 2 measures the runtime overheads introduced by graph

capture for both TorchDynamo and Lazy Tensors. The other

systems are ahead-of-time and do not introduce runtime

overhead. We run each system using the same kernels as Py-

Torch eager, so slowdowns are from graph capture overhead

only. We take the geometric mean slowdown on TorchBench

and subtract 1 to get a percentage overhead added. As with

all our results, we exclude warm up iterations from timing,

so this is measuring steady-state performance.

While the overheads of TorchDynamo are less than 5%,

Lazy Tensors adds a large amount of overhead. These Lazy

Tensor overheads are not uniform across models. For training

with cross-iteration pipelining: one third of models are better

than 10% overhead, one third of models are between 10% and

66% overhead, and one third of models are between 66% and

1759% overhead.

One way to mitigate Lazy Tensor overheads in training

and offline inference is cross-iteration pipelining. This helps

with the fact that for a single iteration of Lazy Tensors, the

GPU is idle while the CPU captures, then the CPU is idle

while the GPU executes what was captured. By running

multiple iterations one can overlap the capture of iteration

𝑁 with the execution of iteration 𝑁 − 1. Lazy Tensors + cross-
iteration pipelining in Table 2 measures this amortization

effect by measuring 10 iterations rather than 1 iteration.

There is a small improvement in Lazy Tensor overheads

from this strategy.

For many models, Lazy Tensor capture is too slow to sat-

urate the GPU. This is especially true for smaller models

or ones with large numbers of operations. In these cases,

pipelining does not help because the limiting factor is Lazy

Tensor overheads. For some PyTorch models, there is code

like if torch.any(torch.isnan(x)) or print(loss.item()). Both of

these operations take values from within PyTorch tensors

and convert them into Python bool or float types. This type
of code is fast in eager mode PyTorch, but defeats any cross

iteration pipelining, because with a (not yet computed) Lazy

Tensor, you have no way of knowing what torch.any() should
return (which controls the branch the code will take) or the

values to print. Since Lazy Tensors has zero visibility into

the Python code calling it, this pattern forces a flush of any

accumulated pipeline of ops and requires the CPU capture

to stall and wait for the GPU to catch up.

6.3 TorchInductor Speedups
Table 3 shows the geometric mean speedups of TorchInduc-

tor and six other TorchDynamo backends over PyTorch eager

across our three benchmark suites and many configurations.

In this experiment, we hold the graph capture mechanism

(TorchDynamo) constant and only vary the backend com-

piler, so every backend gets the same input graphs and incurs

the same capture overheads. Figure 4 is based on the same

data as Table 3, but shows the Cumulative Distribution Func-

tion (CDF) of speedups with the three benchmark suites

combined. This helps better understand how speedups are

distributed.

TorchInductor is faster than other backends in most cases.

nvFuser [36] and NNC [60] both have speedups clustered

around 1× because they make use of eager PyTorch ker-

nels and only generate code for a subset of PyTorch. Py-

Torch/XLA [42] has more varied performance, in many cases

generating large speedups and, in other cases, large slow-

downs which pull down the average. It performs better for

GPU float16 inference compared to other configurations, es-

pecially on the vision models in TIMM. ONNX Runtime [16],

13

TorchBench HuggingFace TIMM
Inference Training Inference Training Inference Training

Models
Working

Geomean
Speedup

Models
Working

Geomean
Speedup

Models
Working

Geomean
Speedup

Models
Working

Geomean
Speedup

Models
Working

Geomean
Speedup

Models
Working

Geomean
Speedup

NVIDIA
A100 GPU
float32

None (TorchDynamo-only) 74/74 0.95× 59/59 0.99× 46/46 1.01× 46/46 0.98× 62/62 1.00× 62/62 1.00×
TorchInductor 74/74 2.73× 58/59 1.38× 46/46 1.47× 46/46 1.24× 62/62 2.48× 62/62 1.38×
nvFuser [36] 53/74 1.23× 45/59 1.04× 38/46 1.09× 36/46 1.09× 57/62 1.16× 56/62 1.03×

NNC [60] 53/74 1.12× 42/59 1.03× 21/46 0.98× 21/46 0.94× 57/62 1.02× 58/62 0.96×
PyTorch/XLA [42] 57/74 0.80× 42/59 0.73× 33/46 1.03× 18/46 0.98× 53/62 1.24× 52/62 1.11×

ONNXRT [16] 34/74 0.86× N/A N/A 21/46 0.84× N/A N/A 29/62 0.92× N/A N/A

TVM [12] 41/74 0.16× N/A N/A 22/46 0.09× N/A N/A 37/62 0.13× N/A N/A

Hidet [18] 15/74 0.54× N/A N/A 0/46 N/A N/A N/A 5/62 0.30× N/A N/A

NVIDIA
A100 GPU
float16

None (TorchDynamo-only) 74/74 0.95× 57/57 0.99× 45/45 1.00× 45/45 0.97× 60/60 1.00× 60/60 1.00×
TorchInductor 74/74 2.59× 57/57 1.50× 45/45 1.91× 45/45 1.45× 60/60 2.77× 60/60 1.50×
nvFuser [36] 53/74 1.27× 45/57 1.04× 37/45 1.07× 35/45 1.04× 56/60 1.13× 54/60 1.01×

NNC [60] 53/74 1.14× 46/57 1.03× 35/45 0.98× 37/45 0.94× 56/60 1.00× 56/60 0.95×
PyTorch/XLA [42] 56/74 0.82× 42/57 0.80× 33/45 1.16× 18/45 0.24× 53/60 1.59× 50/60 1.27×

ONNXRT [16] 34/74 0.86× N/A N/A 21/45 0.84× N/A N/A 29/60 0.92× N/A N/A

TVM [12] 40/74 0.17× N/A N/A 31/45 0.18× N/A N/A 34/60 0.10× N/A N/A

Hidet [18] 15/74 0.57× N/A N/A 0/45 N/A N/A N/A 5/60 0.46× N/A N/A

Intel Xeon
8275CLCPU
float32

None (TorchDynamo-only) 74/74 1.00× 57/57 0.99× 46/46 1.00× 46/46 1.00× 62/62 1.06× 61/61 1.00×
TorchInductor 74/74 1.39× 57/57 1.35× 45/46 2.54× 40/46 1.36× 58/62 2.55× 52/61 1.42×

NNC [60] 51/74 1.14× 47/57 0.99× 38/46 1.15× 38/46 0.92× 58/62 1.04× 58/61 0.85×
PyTorch/XLA [42] 58/74 0.27× 43/57 0.21× 33/46 0.38× 16/46 0.34× 50/62 0.38× 37/61 0.25×

ONNXRT [16] 46/74 1.06× N/A N/A 35/46 0.64× N/A N/A 54/62 1.02× N/A N/A

TVM [12] 44/74 0.64× N/A N/A 14/46 0.10× N/A N/A 47/62 1.46× N/A N/A

Table 3. Geometric mean speedups (higher is better) over PyTorch eager for different TorchDynamo backends and the number

of models they work on in each benchmark suite. Only working models are included in speedup calculation. Comparisons use

same precision in eager mode. N/A means the backend does not support that configuration. All backends use TorchDynamo

as frontend to capture graphs in this experiment and receive the same initial graphs. None is included as a way to estimate

overheads (or speedups) of TorchDynamo without any graph optimizations applied.

0x1x2x3x4x5x6x7x8x9x10x
Speedup greater than

0

50

100

150

200

Nu
m

be
r o

f m
od

el
s

GPU Inference (float32)
TorchInductor
nvFuser
NNC
PyTorch/XLA
ONNXRT
TVM
Hidet

0x1x2x3x
Speedup greater than

0

50

100

150

200

Nu
m

be
r o

f m
od

el
s

GPU Training (float32)
TorchInductor
nvFuser
NNC
PyTorch/XLA

0x1x2x3x4x5x6x7x8x9x10x
Speedup greater than

0

50

100

150

200

Nu
m

be
r o

f m
od

el
s

GPU Inference (float16)
TorchInductor
nvFuser
NNC
PyTorch/XLA
ONNXRT
TVM
Hidet

0x1x2x3x
Speedup greater than

0

50

100

150

200

Nu
m

be
r o

f m
od

el
s

GPU Training (float16)
TorchInductor
nvFuser
NNC
PyTorch/XLA

0x1x2x3x4x5x6x7x8x9x10x
Speedup greater than

0

50

100

150

200

Nu
m

be
r o

f m
od

el
s

CPU Inference
TorchInductor
NNC
PyTorch/XLA
ONNXRT
TVM

0x1x2x3x
Speedup greater than

0

50

100

150

200

Nu
m

be
r o

f m
od

el
s

CPU Training
TorchInductor
NNC
PyTorch/XLA

Figure 4. Cumulative Distribution Function (CDF) of speedups over PyTorch eager mode. For speedups (x-axis) higher is

better and PyTorch eager is 1×. Same underlying data as Table 3.

14

Inference Training

All TorchInductor optimizations 1.91× 1.45×
Without loop/layout reordering 1.91× (-0.00) 1.28× (-0.17)

Without matmul templates 1.85× (-0.06) 1.41× (-0.04)

Without parameter freezing 1.85× (-0.06) 1.45× (-0.00)

Without pattern matching 1.83× (-0.08) 1.45× (-0.00)

Without cudagraphs 1.81× (-0.10) 1.37× (-0.08)

Without fusion 1.68× (-0.23) 1.27× (-0.18)

Without inlining 1.58× (-0.33) 1.31× (-0.14)

Without fusion and inlining 0.80× (-1.11) 0.59× (-0.86)

Table 4. Ablation study measuring the impact of remov-

ing optimizations from TorchInductor. Geometric mean

speedups over eager PyTorch on float16 HuggingFace on

an NVIDIA A100 GPU. Parenthesis is difference from All
TorchInductor optimizations.

TVM [12], and Hidet [18] are inference-only and fail to run

many models due to missing operator implementations and

other issues. On CPU, the ONNX runtime generates speedups

above 8× for 5 models (compared to 1 for TorchInductor), but

these results did not generalize – more than half of models

show slowdowns. On GPU, TVM and Hidet produce slow-

downs for all except 4, and 2, models respectively. On CPU,

TVM performs significantly better for some models while

generating large slowdowns on others. TVM would have

been the second fastest CPU inference backend on Torch-

Bench (behind TorchInductor) if we excluded the models

where it generated large slowdowns.

6.4 Sources of TorchInductor Speedups
Table 4 explores where TorchInductor’s speedups are coming

from by disabling optimizations one at a time an measuring

the impact on geometric mean speedup on HuggingFace

models. If removing a specific optimization results in a bigger

slowdown, this implies that it is responsible for more of the

speedup.

The biggest speedups in TorchInductor come from com-

bining pointwise, reduction, and scatter kernels together into

a smaller number of fused kernels, which reduces memory

traffic since values can be reused without requiring a round

trip to memory. In TorchInductor, these kernel combinations

happen in two places: 1) Inlining happens during lowering,

and duplicates the body of pointwise kernels into all their

consumers when thresholds are met. 2) Fusion happens dur-

ing scheduling, and combines remaining kernels together,

and also does horizontal consumer/consumer fusions. There

is a lot of overlap between those passes, so we also include a

line without fusion and inlining that disables both. Without

both of those passes, TorchInductor generates slowdowns

rather than speedups. This is because the decompositions

performed by TorchInductor break up larger optimized op-

erators into many smaller primitive operators, and we rely

on fusions to recombine them to recover 1× performance.

The remaining optimizations measured in Table 4 are: 1)

Loop/layout reordering uses a voting algorithm to reorder

loops in kernels and change data layouts to match usage. 2)

Matmul templates use Triton templates with pointwise epi-

logue fusion for matrix multiply instead of cuBLAS/cuDNN.

There is an autotuner (enabled by mode="max-autotune") to se-

lect when to use these templates. Without this optimization,

TorchInductor does not use templates at all. 3) Parameter
freezing is an inference-only optimization that constant-folds

away parts of the model that only depend on parameters. 4)

Pattern matching uses graph-level peephole optimizations to

rewrite the input graph before it is lowered to TorchInductor.

5) Cudagraphs is a way to reduce kernel launch overheads at

the CUDA driver level. TorchInductor will automatically use

this when static analysis shows it to be safe and it is enabled

in the configuration.

7 Conclusions
In this paper, we presented two extensions to PyTorch: Torch-

Dynamo and TorchInductor, which deliver speedups through

graph compilation in PyTorch programs while retaining the

flexibility and usability of the eager programming model

PyTorch is known for. By enabling graph compilation in

PyTorch programs, we hope to empower researchers and

practitioners to tackle larger and more complex machine

learning problems with greater efficiency and flexibility.

Acknowledgements
We gratefully thank the anonymous reviewers and our shep-

herd, Martin Maas, for their suggestions and feedback that

helped improve this paper. Thanks to Brett Simmers for

proofreading. Thanks to everyoneworking on Triton, TorchIn-

ductor’s GPU backend would not have been possible without

it. Thanks to the Intel PyTorch team: Guobing Chen, Leslie

Fang, Jiong Gong, Xuan Liao, Yudong Si, Chuanqi Wang,

Eikan Wang, Chunyuan Wu, Weiwen Xia, Xiaobing Zhang,

Fan Zhao, and Beilei Zheng. Their work greatly improved

TorchInductor’s CPU backend. Finally, thanks to the thou-

sands of people who have contributed code to PyTorch. This

work would not have been possible without the countless

contributions that collectively made PyTorch what is is to-

day.

A Artifact Appendix
A.1 Abstract
The source code for this work is included in PyTorch which

is available at https://github.com/pytorch/pytorch/. Torch-
Dynamo can be found in the torch/_dynamo directory and

TorchInductor can be found in the torch/_inductor di-
rectory. Benchmarking code to reproduce the results in the

15

https://github.com/pytorch/pytorch/

paper can be found at https://github.com/pytorch/pytorch/t
ree/main/benchmarks/dynamo.
Since this paper includes a large number of experiments

that in aggregate will take weeks to run, the instructions

here will focus on reproducing the TorchInductor GPU Hug-

gingFace results. The workflow to reproduce other results is

very similar to this and is described at the end. Additional

instructions are included in the README.md included in the

benchmarks/dynamo directory in PyTorch.

A.2 Artifact check-list (meta-information)
• Binary: distributions available at https://pytorch.org/
• Hardware: NVIDIA A100 GPU, Intel Xeon 8275CL CPU

• Metrics: Geomean speedup over PyTorch eager mode

• Howmuch disk space required (approximately)?: 50 GB
• How much time is needed to prepare workflow (ap-
proximately)?: 1 hour

• How much time is needed to complete experiments
(approximately)?: < 1 day per-backend, per-configuration

for most experiments

• Publicly available?: Yes

• Code licenses (if publicly available)?: BSD-3

A.3 Description
A.3.1 How to access.

• Source code and benchmark code: https://github.com
/pytorch/pytorch/

• PyTorch binaries: https://pytorch.org/
• TorchBench: https://github.com/pytorch/benchmark/

A.3.2 Hardware dependencies.
• To match configurations in this paper: NVIDIA A100

GPU and Intel Xeon 8275CL CPU

• Benchmarks can runwith an NVIDIAGPUwith SM80+

and 40GB+ of memory, most benchmarks can run with

less

• CPU results can be run without a GPU

A.3.3 Software dependencies.
• A recent Linux distribution

• NVIDIA kernel drivers

• CUDA version compatible with the chosen version of

PyTorch

• gcc/g++ compatible with the chosen CUDA

• Miniconda installed (https://docs.conda.io/projects/m
iniconda/en/latest/)

• PyTorch (and dependencies)

• Additional python packages: pandas, scipy, psutil, and

tqdm

A.4 Installation
There are a number of options to install PyTorch which are

described on https://pytorch.org/. A minimal installation

including dependencies can be achieved using the following

commands:

create a new conda environment

conda create --name=pt2 python=3.10

conda activate pt2

install dependencies for benchmark code

conda install pandas scipy psutil tqdm

install PyTorch using release build

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 \

-c pytorch -c nvidia

Next, download the PyTorch source code in order to access

benchmarking scripts:

clone the PyTorch repository to get benchmark code

git clone --recursive --branch=release/2.1 \

https://github.com/pytorch/pytorch

benchmark code should be run from the root PyTorch directory

cd pytorch

A.5 Experiment workflow
To reproduce TorchInductor speedups over eager PyTorch

on HuggingFace, float16, GPU, inference run:

TORCHINDUCTOR_MAX_AUTOTUNE=1 ./benchmarks/dynamo/huggingface.py \

--performance --no-skip \

-dcuda --float16 --inference \

--inductor --freezing \

--output=`pwd`/results.csv

This downloads HuggingFace models and runs them both

with and without TorchDynamo to compute speedups com-

pared to PyTorch eagermode. Results arewritten to results.csv

in the current working directory. If one runs additional exper-

iments, --output should be set to a unique absolute filename

for each one.

A.6 Evaluation and expected results
The chosen output file (results.csv) should contain 46 en-

tries showing speedup numbers (and other metrics) for each

model. All models should be working (failures are repre-

sented as a zero speedup) and the geomean of all the speedups

should be similar to the speedups reported in the paper.

A.7 Experiment customization
The above command can be customized in many ways:

• ./benchmarks/dynamo/huggingface.py can be substituted
with the scripts ./benchmarks/dynamo/timm_models.py or

./benchmarks/dynamo/torchbench.py for the three bench-

mark suites. Note that TorchBench requires additional

installation steps, while the other two auto-download

dependencies.

• -dcuda can be replaced with -dcpu for CPU

• --float16 can be replaced with --float32 or --amp

• --inference can be replaced with --training

• --inductor can be replaced with --backend=eager

(for "None"), --backend=nvfuser, --backend=nnc , --xla,

--backend=onnxrt, --backend=tvm, or --backend=hidet.

Note that each backend has different dependencies

and setup instructions.

16

https://github.com/pytorch/pytorch/tree/main/benchmarks/dynamo
https://github.com/pytorch/pytorch/tree/main/benchmarks/dynamo
https://pytorch.org/
https://github.com/pytorch/pytorch/
https://github.com/pytorch/pytorch/
https://pytorch.org/
https://github.com/pytorch/benchmark/
https://docs.conda.io/projects/miniconda/en/latest/
https://docs.conda.io/projects/miniconda/en/latest/
https://pytorch.org/

• --freezing and/or TORCHINDUCTOR_MAX_AUTOTUNE=1 can be
removed to disable those optimizations in TorchInduc-

tor. Many more optimization flags can be found in

torch/_inductor/config.py.

• Many other options and backends are available via

--help

The results in this paper include the combinatorial product

of most of these flags.

A.8 Notes
• Speedups andmodel coverage results have improved in

recent versions of PyTorch compared to results shown

in this paper. We recommend running the latest Py-

Torch version for future comparisons.

• Performance results can be sensitive to environment

setup, such as hardware and CUDA versions, so some

small differences are expected.

• Additional installation steps are required for Torch-

Bench and non-TorchInductor backends.

• A performance dashboard based on these scripts is

available at https://hud.pytorch.org/benchmark/comp
ilers.

References
[1] Martin Abadi et al. 2016. TensorFlow: A system for large-scale ma-

chine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 265–283. https://www.usenix
.org/system/files/conference/osdi16/osdi16-abadi.pdf.

[2] [SW] Martín Abadi et al., TensorFlow, Large-scale machine learning

on heterogeneous systems Nov. 2015. doi: 10.5281/zenodo.4724125.
[3] Hameer Abbasi, Edward Z Yang, and Ralf Gommers. 2020. Improving

subclassing Tensor by propagating subclass instances. https://githu
b.com/pytorch/rfcs/blob/master/RFC-0001-torch-function-for-me
thods.md. (Aug. 2020).

[4] AkshayAgrawal et al. 2019. TensorFlowEager: AMulti-Stage, Python-

Embedded DSL for Machine Learning. CoRR, abs/1903.01855. http:
//arxiv.org/abs/1903.01855 arXiv: 1903.01855.

[5] Rami Al-Rfou et al. 2016. Theano: A Python framework for fast

computation of mathematical expressions. CoRR, abs/1605.02688.
http://arxiv.org/abs/1605.02688 arXiv: 1605.02688.

[6] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-

Kelley, Jeffrey Bosboom, Una-MayO’Reilly, and SamanAmarasinghe.

2014. Opentuner: an extensible framework for program autotuning.

In Proceedings of the 23rd International Conference on Parallel Ar-
chitectures and Compilation (PACT ’14). Association for Computing

Machinery, Edmonton, AB, Canada, 303–316. isbn: 9781450328098.

doi: 10.1145/2628071.2628092.
[7] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele

Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suriana,

Shoaib Kamil, and Saman Amarasinghe. 2019. Tiramisu: a polyhedral

compiler for expressing fast and portable code. In Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO 2019). IEEE Press, Washington, DC, USA, 193–

205. isbn: 9781728114361.

[8] [SW] James Bradbury et al., JAX: composable transformations of

Python+NumPy programs version 0.3.13, 2018. url: http://github.c
om/google/jax.

[9] Dino Viehland Brett Cannon. 2016. PEP 523: adding a frame evalua-

tion API to CPython. https://peps.python.org/pep-0523/. (2016).

[10] Jack Cao. 2022. PyTorch/XLA 2022 Q4 dev update. https://dev-discu
ss.pytorch.org/t/pytorch-xla-2022-q4-dev-update/961. (2022).

[11] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry

Moreau, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.

2018. Learning to optimize tensor programs. In Proceedings of the
32nd International Conference on Neural Information Processing Sys-
tems (NIPS’18). Curran Associates Inc., Montréal, Canada, 3393–

3404.

[12] Tianqi Chen et al. 2018. TVM: an automated End-to-End optimizing

compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,

Carlsbad, CA, (Oct. 2018), 578–594. isbn: 978-1-939133-08-3. https:
//www.usenix.org/conference/osdi18/presentation/chen.

[13] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan

Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014.

cuDNN: efficient primitives for deep learning. (2014). arXiv: 1410.07
59 [cs.NE].

[14] Will Constable et al. 2020. TorchBench: a collection of open source

benchmarks for PyTorch performance and usability evaluation. http
s://github.com/pytorch/benchmark. (Sept. 2020).

[15] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an indus-

try standard API for shared-memory programming. Computational
Science & Engineering, IEEE, 5, 1, 46–55.

[16] ONNX Runtime developers. 2021. ONNX runtime. https://www.onn
xruntime.ai. (2021).

[17] Zachary DeVito et al. 2018. TorchScript. https://pytorch.org/docs/1
.9.0/jit.html. (Sept. 2018).

[18] Yaoyao Ding, Cody Hao Yu, Bojian Zheng, Yizhi Liu, Yida Wang, and

Gennady Pekhimenko. 2023. Hidet: task-mapping programming par-

adigm for deep learning tensor programs. In Proceedings of the 28th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (ASPLOS 2023).

Association for Computing Machinery, Vancouver, BC, Canada, 370–

384. isbn: 9781450399166. doi: 10.1145/3575693.3575702.
[19] Siyuan Feng et al. 2022. TensorIR: an abstraction for automatic ten-

sorized program optimization. (2022). arXiv: 2207.04296 [cs.LG].
[20] Alan Gray. 2019. Getting started with CUDA graphs. https://develo

per.nvidia.com/blog/cuda-graphs/. (2019).
[21] Charles R. Harris et al. 2020. Array programming with NumPy. Na-

ture, 585, 357–362. doi: 10.1038/s41586-020-2649-2.
[22] Horace He. 2019. The state of machine learning frameworks in 2019.

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-d
ominates-research-tensorflow-dominates-industry/. (2019).

[23] Mike Innes et al. 2017. On machine learning and programming lan-

guages. https://julialang.org/blog/2017/12/ml-pl/. (Dec. 2017).
[24] ISO. 1998. ISO/IEC 14882:1998: Programming languages — C++. (Sept.

1998), 732. http://webstore.ansi.org/ansidocstore/product.asp?sku
=ISO%2FIEC+14882%2D1998.

[25] Yangqing Jia, Evan Shelhamer, JeffDonahue, Sergey Karayev, Jonathan

Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional Architecture for Fast Feature Embedding. CoRR,
abs/1408.5093. http://arxiv.org/abs/1408.5093 arXiv: 1408.5093.

[26] Norman P. Jouppi et al. 2017. In-datacenter performance analysis

of a tensor processing unit. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture (ISCA ’17). Associa-

tion for Computing Machinery, Toronto, ON, Canada, 1–12. isbn:

9781450348928. doi: 10.1145/3079856.3080246.
[27] Chris Lattner et al. 2021. MLIR: scaling compiler infrastructure for

domain specific computation. In 2021 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), 2–14. doi: 10.1
109/CGO51591.2021.9370308.

[28] Aaron Meurer et al. 2017. SymPy: symbolic computing in Python.

PeerJ Computer Science, 3, (Jan. 2017). doi: 10.7717/peerj-cs.103.

17

https://hud.pytorch.org/benchmark/compilers
https://hud.pytorch.org/benchmark/compilers
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.5281/zenodo.4724125
https://github.com/pytorch/rfcs/blob/master/RFC-0001-torch-function-for-methods.md
https://github.com/pytorch/rfcs/blob/master/RFC-0001-torch-function-for-methods.md
https://github.com/pytorch/rfcs/blob/master/RFC-0001-torch-function-for-methods.md
http://arxiv.org/abs/1903.01855
http://arxiv.org/abs/1903.01855
https://arxiv.org/abs/1903.01855
http://arxiv.org/abs/1605.02688
https://arxiv.org/abs/1605.02688
https://doi.org/10.1145/2628071.2628092
http://github.com/google/jax
http://github.com/google/jax
https://peps.python.org/pep-0523/
https://dev-discuss.pytorch.org/t/pytorch-xla-2022-q4-dev-update/961
https://dev-discuss.pytorch.org/t/pytorch-xla-2022-q4-dev-update/961
https://www.usenix.org/conference/osdi18/presentation/chen
https://www.usenix.org/conference/osdi18/presentation/chen
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1410.0759
https://github.com/pytorch/benchmark
https://github.com/pytorch/benchmark
https://www.onnxruntime.ai
https://www.onnxruntime.ai
https://pytorch.org/docs/1.9.0/jit.html
https://pytorch.org/docs/1.9.0/jit.html
https://doi.org/10.1145/3575693.3575702
https://arxiv.org/abs/2207.04296
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://doi.org/10.1038/s41586-020-2649-2
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://julialang.org/blog/2017/12/ml-pl/
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998
http://webstore.ansi.org/ansidocstore/product.asp?sku=ISO%2FIEC+14882%2D1998
http://arxiv.org/abs/1408.5093
https://arxiv.org/abs/1408.5093
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.7717/peerj-cs.103

[29] Adrian Mönnich, Armin Ronacher, David Lord, Grey Li, Joshua

Bronson, Markus Unterwaditzer, and Philip Jones. 2023. Jinja project.

https://github.com/pallets/jinja. (2023).
[30] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. 2023. CUDA.

https://developer.nvidia.com/cuda-toolkit. (2023).
[31] 2023. ONNX. https://onnx.ai/. (2023).
[32] 2019. Pytorch: an imperative style, high-performance deep learning

library. Proceedings of the 33rd International Conference on Neural
Information Processing Systems. Curran Associates Inc., Red Hook,

NY, USA, 12 pages.

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: a lan-

guage and compiler for optimizing parallelism, locality, and recom-

putation in image processing pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’13). Association for Computing Machinery,

Seattle, Washington, USA, 519–530. isbn: 9781450320146. doi: 10.11
45/2491956.2462176.

[34] James Reed, Zachary DeVito, Horace He, Ansley Ussery, and Jason

Ansel. 2022. Torch.fx: practical program capture and transformation

for deep learning in python. In Proceedings of Machine Learning and
Systems. D. Marculescu, Y. Chi, and C. Wu, (Eds.) Vol. 4, 638–651.

https://proceedings.mlsys.org/paper/2022/file/ca46c1b9512a7a831
5fa3c5a946e8265-Paper.pdf.

[35] Elvis Saravia. 2021. Papers with Code 2021: a year in review. https:
//medium.com/paperswithcode/papers-with-code-2021-a-year-in-
review-de75d5a77b8b. (2021).

[36] Christian Sarofeen, Piotr Bialecki, Jie Jiang, Kevin Stephano, Masaki

Kozuki, Neal Vaidya, and Stas Bekman. 2022. Introducing nvFuser, a

deep learning compiler for PyTorch. https://pytorch.org/blog/introd
ucing-nvfuser-a-deep-learning-compiler-for-pytorch/. (2022).

[37] Frank Seide and Amit Agarwal. 2016. CNTK: microsoft’s open-source

deep-learning toolkit. In Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD

’16). Association for Computing Machinery, San Francisco, Califor-

nia, USA, 2135. isbn: 9781450342322. doi: 10.1145/2939672.2945397.
[38] Junru Shao et al. 2022. Tensor program optimization with probabilis-

tic programs. (2022). arXiv: 2205.13603 [cs.LG].
[39] Alex Suhan, Davide Libenzi, Ailing Zhang, Parker Schuh, Bren-

nan Saeta, Jie Young Sohn, and Denys Shabalin. 2021. LazyTensor:

combining eager execution with domain-specific compilers. arXiv
preprint arXiv:2102.13267.

[40] PyTorch Team. 2023. TorchDynamo Benchmarking Code. https://git
hub.com/pytorch/pytorch/tree/main/benchmarks/dynamo. (2023).

[41] PyTorch Team. 2023. TorchInductor Performance Dashboard. https:
//hud.pytorch.org/benchmark/compilers. (2023).

[42] PyTorch XLA Team. 2023. PyTorch/XLA. https://github.com/pytorc
h/xla. (2023).

[43] Vijay Thakkar et al. 2023. CUTLASS. https://github.com/NVIDIA/cu
tlass. Version 3.0.0. (Jan. 2023).

[44] [SW] The IREE Authors, IREE Sept. 2019. url: https://github.com/o
penxla/iree.

[45] The XLA Team. 2017. XLA - Tensorflow, compiled. https://develop
ers.googleblog.com/2017/03/xla-tensorflow-compiled.html. (Mar.

2017).

[46] Philippe Tillet, H. T. Kung, and David Cox. 2019. Triton: an interme-

diate language and compiler for tiled neural network computations.

In (MAPL 2019). Association for Computing Machinery, Phoenix,

AZ, USA, 10–19. isbn: 9781450367196. doi: 10.1145/3315508.3329973.
[47] Seiya Tokui et al. 2019. Chainer: A Deep Learning Framework for

Accelerating the Research Cycle. CoRR, abs/1908.00213. http://arxiv
.org/abs/1908.00213 arXiv: 1908.00213.

[48] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya

Goyal, Zachary DeVito,William S. Moses, Sven Verdoolaege, Andrew

Adams, and Albert Cohen. 2018. Tensor comprehensions: framework-

agnostic high-performance machine learning abstractions. (2018).

arXiv: 1802.04730 [cs.PL].
[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS’17). Cur-
ran Associates Inc., Long Beach, California, USA, 6000–6010. isbn:

9781510860964.

[50] B. P. Welford. 1962. Note on a method for calculating corrected

sums of squares and products. Technometrics, 4, 3, 419–420. doi:
10.1080/00401706.1962.10490022.

[51] Jian Weng, Animesh Jain, Jie Wang, Leyuan Wang, Yida Wang, and

Tony Nowatzki. 2021. Unit: unifying tensorized instruction compila-

tion. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), 77–89. doi: 10.1109/CGO51591.2021.93703
30.

[52] Ross Wightman. 2019. PyTorch image models. https://github.com/r
wightman/pytorch-image-models. (2019). doi: 10.5281/zenodo.4414
861.

[53] Thomas Wolf et al. 2020. Transformers: State-of-the-Art Natural

Language Processing. In Association for Computational Linguistics,

(Oct. 2020), 38–45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6.

[54] Jiarong Xing, Leyuan Wang, Shang Zhang, Jack Chen, Ang Chen,

and Yibo Zhu. 2022. Bolt: bridging the gap between auto-tuners and

hardware-native performance. In Proceedings of Machine Learning
and Systems. D. Marculescu, Y. Chi, and C. Wu, (Eds.) Vol. 4, 204–216.

https://proceedings.mlsys.org/paper_files/paper/2022/file/38b3eff
8baf56627478ec76a704e9b52-Paper.pdf.

[55] Shangdi Yu and Horace He. 2023. Transcending runtime-memory

tradeoffs in checkpointing by being fusion aware. In Proceedings of
Machine Learning and Systems.

[56] Bojian Zheng et al. 2022. Dietcode: automatic optimization for dy-

namic tensor programs. In Proceedings of Machine Learning and
Systems. D. Marculescu, Y. Chi, and C. Wu, (Eds.) Vol. 4, 848–863.

https://proceedings.mlsys.org/paper_files/paper/2022/file/fa7cdfa
d1a5aaf8370ebeda47a1ff1c3-Paper.pdf.

[57] Lianmin Zheng et al. 2020. Ansor: generating high-performance ten-

sor programs for deep learning. In Proceedings of the 14th USENIX
Conference onOperating SystemsDesign and Implementation (OSDI’20)
Article 49. USENIX Association, USA, 17 pages. isbn: 978-1-939133-

19-9.

[58] Size Zheng et al. 2022. AMOS: enabling automatic mapping for tensor

computations on spatial accelerators with hardware abstraction. In

Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA ’22). Association for Computing Machinery, New

York, New York, 874–887. isbn: 9781450386104. doi: 10.1145/347049
6.3527440.

[59] Hongyu Zhu et al. 2022. ROLLER: fast and efficient tensor compi-

lation for deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22). USENIX Association,

Carlsbad, CA, (July 2022), 233–248. isbn: 978-1-939133-28-1. https:
//www.usenix.org/conference/osdi22/presentation/zhu.

[60] Mikhail Zolotukhin. 2021. NNC walkthrough: how PyTorch ops get

fused. https://dev-discuss.pytorch.org/t/nnc-walkthrough-how-pyt
orch-ops-get-fused/125. (2021).

18

https://github.com/pallets/jinja
https://developer.nvidia.com/cuda-toolkit
https://onnx.ai/
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://proceedings.mlsys.org/paper/2022/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://proceedings.mlsys.org/paper/2022/file/ca46c1b9512a7a8315fa3c5a946e8265-Paper.pdf
https://medium.com/paperswithcode/papers-with-code-2021-a-year-in-review-de75d5a77b8b
https://medium.com/paperswithcode/papers-with-code-2021-a-year-in-review-de75d5a77b8b
https://medium.com/paperswithcode/papers-with-code-2021-a-year-in-review-de75d5a77b8b
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://pytorch.org/blog/introducing-nvfuser-a-deep-learning-compiler-for-pytorch/
https://doi.org/10.1145/2939672.2945397
https://arxiv.org/abs/2205.13603
https://github.com/pytorch/pytorch/tree/main/benchmarks/dynamo
https://github.com/pytorch/pytorch/tree/main/benchmarks/dynamo
https://hud.pytorch.org/benchmark/compilers
https://hud.pytorch.org/benchmark/compilers
https://github.com/pytorch/xla
https://github.com/pytorch/xla
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://github.com/openxla/iree
https://github.com/openxla/iree
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
https://doi.org/10.1145/3315508.3329973
http://arxiv.org/abs/1908.00213
http://arxiv.org/abs/1908.00213
https://arxiv.org/abs/1908.00213
https://arxiv.org/abs/1802.04730
https://doi.org/10.1080/00401706.1962.10490022
https://doi.org/10.1109/CGO51591.2021.9370330
https://doi.org/10.1109/CGO51591.2021.9370330
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861
https://doi.org/10.5281/zenodo.4414861
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlsys.org/paper_files/paper/2022/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/38b3eff8baf56627478ec76a704e9b52-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Paper.pdf
https://doi.org/10.1145/3470496.3527440
https://doi.org/10.1145/3470496.3527440
https://www.usenix.org/conference/osdi22/presentation/zhu
https://www.usenix.org/conference/osdi22/presentation/zhu
https://dev-discuss.pytorch.org/t/nnc-walkthrough-how-pytorch-ops-get-fused/125
https://dev-discuss.pytorch.org/t/nnc-walkthrough-how-pytorch-ops-get-fused/125

	Abstract
	1 Introduction
	2 Prior Attempts at PyTorch Graph Capture
	2.1 torch.jit.trace
	2.2 torch.jit.script
	2.3 Lazy Tensors
	2.4 torch.fx.symbolic_trace
	2.5 torch.onnx.export
	2.6 Comparison To Graph Capture In JAX

	3 TorchDynamo Design and Implementation
	3.1 Usage API
	3.2 CPython Frame Evaluation Hook
	3.3 Guards
	3.4 Symbolic Evaluation
	3.5 Modeling Python Data Structures
	3.6 Inlining, Control Flow, and Closures
	3.7 Mutation and Side Effects
	3.8 Graph Breaks and Continuation Functions
	3.9 AOTAutograd

	4 TorchInductor Design and Implementation
	4.1 Design Principles and Key Technologies
	4.2 Decompositions
	4.3 Lowerings and Define-By-Run Loop-Level IR
	4.4 Scheduling
	4.5 Triton Code Generation
	4.6 C++ Code Generation
	4.7 Wrapper Codegen
	4.8 Related Deep Learning Compilers

	5 Dynamic Shapes
	5.1 Symbolic Shape Guards
	5.2 Optimizing Dynamic Shapes Reasoning
	5.3 Hint-Free (Unbacked) Symbolic Integers

	6 Experimental Results
	6.1 TorchDynamo's Ability to Capture Graphs
	6.2 Overheads of Graph Capture
	6.3 TorchInductor Speedups
	6.4 Sources of TorchInductor Speedups

	7 Conclusions
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization
	A.8 Notes

