.. _Torch_TensorRT_in_JetPack_6.1 Overview ################## JetPack 6.1 --------------------- Nvida JetPack 6.1 is the latest production release ofJetPack 6. With this release it incorporates: CUDA 12.6 TensorRT 10.3 cuDNN 9.3 DLFW 24.09 You can find more details for the JetPack 6.1: * https://docs.nvidia.com/jetson/jetpack/release-notes/index.html * https://docs.nvidia.com/deeplearning/frameworks/install-pytorch-jetson-platform/index.html Prerequisites ~~~~~~~~~~~~~~ Ensure your jetson developer kit has been flashed with the latest JetPack 6.1. You can find more details on how to flash Jetson board via sdk-manager: * https://developer.nvidia.com/sdk-manager check the current jetpack version using .. code-block:: sh apt show nvidia-jetpack Ensure you have installed JetPack Dev components. This step is required if you need to build on jetson board. You can only install the dev components that you require: ex, tensorrt-dev would be the meta-package for all TRT development or install everthing. .. code-block:: sh # install all the nvidia-jetpack dev components sudo apt-get update sudo apt-get install nvidia-jetpack Ensure you have cuda 12.6 installed(this should be installed automatically from nvidia-jetpack) .. code-block:: sh # check the cuda version nvcc --version # if not installed or the version is not 12.6, install via the below cmd: sudo apt-get update sudo apt-get install cuda-toolkit-12-6 Ensure libcusparseLt.so exists at /usr/local/cuda/lib64/: .. code-block:: sh # if not exist, download and copy to the directory wget https://developer.download.nvidia.com/compute/cusparselt/redist/libcusparse_lt/linux-sbsa/libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz tar xf libcusparse_lt-linux-sbsa-0.5.2.1-archive.tar.xz sudo cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/include/* /usr/local/cuda/include/ sudo cp -a libcusparse_lt-linux-sbsa-0.5.2.1-archive/lib/* /usr/local/cuda/lib64/ Build torch_tensorrt ~~~~~~~~~~~~~~ Install bazel .. code-block:: sh wget -v https://github.com/bazelbuild/bazelisk/releases/download/v1.20.0/bazelisk-linux-arm64 sudo mv bazelisk-linux-arm64 /usr/bin/bazel chmod +x /usr/bin/bazel Install pip and required python packages: * https://pip.pypa.io/en/stable/installation/ .. code-block:: sh # install pip wget https://bootstrap.pypa.io/get-pip.py python get-pip.py .. code-block:: sh # install pytorch from nvidia jetson distribution: https://developer.download.nvidia.com/compute/redist/jp/v61/pytorch python -m pip install torch https://developer.download.nvidia.com/compute/redist/jp/v61/pytorch/torch-2.5.0a0+872d972e41.nv24.08.17622132-cp310-cp310-linux_aarch64.whl .. code-block:: sh # install required python packages python -m pip install -r toolchains/jp_workspaces/requirements.txt # if you want to run the test cases, then install the test required python packages python -m pip install -r toolchains/jp_workspaces/test_requirements.txt Build and Install torch_tensorrt wheel file Since torch_tensorrt version has dependencies on torch version. torch version supported by JetPack6.1 is from DLFW 24.08/24.09(torch 2.5.0). Please make sure to build torch_tensorrt wheel file from source release/2.5 branch (TODO: lanl to update the branch name once release/ngc branch is available) .. code-block:: sh cuda_version=$(nvcc --version | grep Cuda | grep release | cut -d ',' -f 2 | sed -e 's/ release //g') export TORCH_INSTALL_PATH=$(python -c "import torch, os; print(os.path.dirname(torch.__file__))") export SITE_PACKAGE_PATH=${TORCH_INSTALL_PATH::-6} export CUDA_HOME=/usr/local/cuda-${cuda_version}/ # replace the MODULE.bazel with the jetpack one cat toolchains/jp_workspaces/MODULE.bazel.tmpl | envsubst > MODULE.bazel # build and install torch_tensorrt wheel file python setup.py install --user