PolynomialLR#
- class torch.optim.lr_scheduler.PolynomialLR(optimizer, total_iters=5, power=1.0, last_epoch=-1)[source]#
Decays the learning rate of each parameter group using a polynomial function in the given total_iters.
When last_epoch=-1, sets initial lr as lr.
- Parameters
Example
>>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.0490 if epoch == 0 >>> # lr = 0.0481 if epoch == 1 >>> # lr = 0.0472 if epoch == 2 >>> # ... >>> # lr = 0.0 if epoch >= 50 >>> scheduler = PolynomialLR(optimizer, total_iters=50, power=0.9) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step()
- load_state_dict(state_dict)[source]#
Load the scheduler’s state.
- Parameters
state_dict (dict) – scheduler state. Should be an object returned from a call to
state_dict()
.