Shortcuts

Source code for torch.distributed.checkpoint.state_dict

# mypy: allow-untyped-defs
import contextlib
import functools
import gc
import warnings
from collections.abc import Generator, Iterable
from dataclasses import asdict, dataclass, field
from itertools import chain
from typing import Any, Callable, cast, no_type_check, Optional, Union

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import (
    _broadcast_state_dict,
    _distribute_state_dict,
    _flatten_state_dict,
    _gather_state_dict,
    _offload_state_dict_to_cpu,
    _unflatten_state_dict,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
    _CHECKPOINT_PREFIX,
)
from torch.distributed.fsdp import (
    FullOptimStateDictConfig,
    FullStateDictConfig,
    FullyShardedDataParallel as FSDP,
    OptimStateDictConfig,
    ShardedOptimStateDictConfig,
    ShardedStateDictConfig,
    StateDictConfig,
    StateDictType,
)
from torch.distributed.fsdp._common_utils import (
    _get_module_fsdp_state_if_fully_sharded_module,
    FSDP_WRAPPED_MODULE,
)
from torch.distributed.tensor import DTensor
from torch.nn.modules.module import _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils._pytree import tree_map_only


__all__ = [
    "FQNS_T",
    "PrimitiveType",
    "ValueType",
    "DictValueType",
    "ListDictValueType",
    "OptimizerStateType",
    "StateDictOptions",
    "get_model_state_dict",
    "get_optimizer_state_dict",
    "get_state_dict",
    "set_model_state_dict",
    "set_optimizer_state_dict",
    "set_state_dict",
]


_FLAT_PARAM = "_flat_param"
_PG = "param_groups"
_PARAMS = "params"
_STATE = "state"

FQNS_T = set[str]
PrimitiveType = Union[DTensor, ShardedTensor, torch.Tensor, int, float, str]
ValueType = Union[
    PrimitiveType, list[PrimitiveType], tuple[PrimitiveType], dict[str, "ValueType"]
]
DictValueType = dict[str, ValueType]
ListDictValueType = list[DictValueType]
OptimizerStateType = dict[str, Union[DictValueType, ListDictValueType]]


_patched_state_dict: set[Callable] = set()


@contextlib.contextmanager
def _gc_context():
    is_enabled = gc.isenabled()
    gc.disable()
    try:
        yield
    finally:
        if is_enabled:
            gc.enable()


[docs]@dataclass class StateDictOptions: """ This dataclass specifies how get_state_dict/set_state_dict will work. - ``full_state_dict``: if this is set to True, all the tensors in the returned state_dict will be gathered. No ShardedTensor and DTensor will be in the returned state_dict. - ``cpu_offload``: offload all the tensors to cpu. To prevent CPU OOM, if ``full_state_dict`` is also true, then only the rank0 will get the state_dict and all other ranks will get empty state_dict. - ``ignore_frozen_params``: if the value is True, the returned state_dict won't contain any frozen parameters -- the ``requires_grad`` is False. The default value is False. - ``keep_submodule_prefixes`` (deprecated): when ``submodules`` is not None, this option indicates whether to keep the submodule prefixes from the state_dict keys. or example, if the submodule is ``module.pretrain`` and the full FQN of the parameter is ``pretrain.layer1.weight`` of the param. When this option is True, the parameter's key in the returned state_dict will be ``pretrain.layer1.weight``. If the options is False, the key will be ``layer1.weight``. Note that if ``keep_submodule_prefixes`` is False, there may be conflicted FQNs, hence there should be only one submodule in ``submodules``. - ``strict``: the ``strict`` option when ``set_state_dict`` calls model.load_state_dict(). - ``broadcast_from_rank0``: when the option is True, rank0 should receive a full state_dict and will broadcast the tensors in the state_dict/ optim_state_dict one by one to other ranks. Other ranks will receive the tensors and shard according to the local shards in the model and optimizer. ``full_state_dict`` must be set to True when using this option. This option currently only supports DTensor, not the legacy ShardedTensor. """ full_state_dict: bool = False cpu_offload: bool = False ignore_frozen_params: bool = False keep_submodule_prefixes: bool = True strict: bool = True broadcast_from_rank0: bool = False flatten_optimizer_state_dict: bool = False
@dataclass class _StateDictInfo(StateDictOptions): fqn_param_mapping: dict[ Union[str, torch.Tensor], Union[FQNS_T, torch.Tensor] ] = field(default_factory=dict) shared_params_mapping: dict[ Union[str, torch.Tensor], Union[FQNS_T, torch.Tensor] ] = field(default_factory=dict) submodule_prefixes: set[str] = field(default_factory=set) handle_model: bool = True handle_optim: bool = True fsdp_context: Callable = contextlib.nullcontext fsdp_modules: list[nn.Module] = field(default_factory=list) @functools.cache def _get_fqns( model: nn.Module, name: str, skip_ddp_prefix: bool = True, skip_compiler_prefix: bool = True, ) -> FQNS_T: """ This API is used to convert the name of a parameter to the FQNs. For FSDP without `use_orig_params`, the name of FlatParameter can be mapped to multiple original parameters. As a result, the return type of this function is `Set[str]`. Args: module (nn.Module): the root model. name (str): the name skip_ddp_prefix (bool): whether to skip DDP's `module` prefix Returns: The canonical FQNs based on the model traversal. """ # Remove the checkpoint prefix, if it exists. name = name.replace(_CHECKPOINT_PREFIX, "") if "." not in name: return {name} obj_names = name.split(".") fqn_obj_names = [] curr_obj = model for i, curr_obj_name in enumerate(obj_names): if isinstance(curr_obj, DDP): assert curr_obj_name == "module" curr_obj = curr_obj.module if not skip_ddp_prefix: fqn_obj_names.append(curr_obj_name) elif isinstance(curr_obj, FSDP): if i < len(obj_names) - 1 and obj_names[i + 1] == _FLAT_PARAM: prefix = ".".join(fqn_obj_names) flat_param = getattr(curr_obj, _FLAT_PARAM) if prefix: prefix = f"{prefix}." return {f"{prefix}{fqn}" for fqn in flat_param._fqns} curr_obj = getattr(curr_obj, FSDP_WRAPPED_MODULE) if curr_obj_name != FSDP_WRAPPED_MODULE: fqn_obj_names.append(curr_obj_name) curr_obj = getattr(curr_obj, curr_obj_name) elif isinstance(curr_obj, torch._dynamo.eval_frame.OptimizedModule): assert curr_obj_name == "_orig_mod" curr_obj = curr_obj._orig_mod if not skip_compiler_prefix: fqn_obj_names.append(curr_obj_name) else: fqn_obj_names.append(curr_obj_name) if curr_obj_name == nn.modules.module._EXTRA_STATE_KEY_SUFFIX: if i != len(obj_names) - 1: raise RuntimeError("Expect `_extra_state` to be the last obj name") else: curr_obj = getattr(curr_obj, curr_obj_name) return {".".join(fqn_obj_names).replace(_CHECKPOINT_PREFIX, "")} class _EXTRA_STATE: pass def _iterate_valid_model_state(model): visited_modules: set[nn.Module] = set() def recurse(module: nn.Module, curr_fqn: str) -> Generator: visited_modules.add(module) curr_fqn = f"{curr_fqn}." if curr_fqn else "" for name, submodule in module.named_children(): if submodule in visited_modules: continue new_fqn = f"{curr_fqn}{name}" yield from recurse(submodule, new_fqn) for name, obj in chain( module.named_buffers(recurse=False), module.named_parameters(recurse=False) ): if name in module._non_persistent_buffers_set: continue new_fqn = f"{curr_fqn}{name}" yield new_fqn, obj if ( getattr(module.__class__, "get_extra_state", nn.Module.get_extra_state) != nn.Module.get_extra_state ): new_fqn = f"{curr_fqn}{nn.modules.module._EXTRA_STATE_KEY_SUFFIX}" yield new_fqn, _EXTRA_STATE() yield from recurse(model, "") def _verify_options( model: nn.Module, optims: tuple[torch.optim.Optimizer, ...], optim_only: bool, *, submodules: Optional[set[nn.Module]] = None, options: Optional[StateDictOptions] = None, ) -> _StateDictInfo: """ Verify the model and options passed by the user and generates _StateDictInfo. """ if submodules: warnings.warn( "Getting submodules only model/optim state_dict is deprecated and " "will be removed in 2.5. This feature can be achieved by manually " "filtering out the state_dict returned from get_state_dict.", FutureWarning, ) if optim_only and not optims: raise RuntimeError( "Optimizers are not passed in but optim_only is set to True." ) options = options or StateDictOptions() fqn_param_mapping: dict[ Union[str, torch.Tensor], Union[set[str], torch.Tensor] ] = {} shared_params_mapping: dict[ Union[str, torch.Tensor], Union[set[str], torch.Tensor] ] = {} for name, param in _iterate_valid_model_state(model): if isinstance(param, _EXTRA_STATE): continue fqns = _get_fqns(model, name) fqn = fqn_param_mapping.get(param, None) if fqn is not None: cast(set[str], fqn_param_mapping[param]).update(fqns) shared_params_mapping[param] = fqn_param_mapping[param] else: # We need to do copy as _get_fqns is lru_cached fqn_param_mapping[param] = fqns.copy() for fqn in fqns: if not isinstance(param, _EXTRA_STATE): fqn_param_mapping[fqn] = param for param_, fqns_ in list(shared_params_mapping.items()): for fqn in fqns_: shared_params_mapping[fqn] = cast(torch.Tensor, param_) submodule_prefixes: set[str] = set() if submodules: submodules = set(submodules) for name, module in model.named_modules(): if module not in submodules: continue fqns = _get_fqns(model, name) assert len(fqns) == 1, "Submodule FQN should only have 1 instance" submodule_prefixes.update(f"{fqn}." for fqn in fqns) if options.broadcast_from_rank0 and not options.full_state_dict: raise ValueError( "full_state_dict must be True when broadcast_from_rank0 is True." ) fsdp_modules = FSDP.fsdp_modules(model) state_dict_config: StateDictConfig optim_state_dict_config: OptimStateDictConfig fsdp_context: Callable if fsdp_modules: # FSDP API only work if at least one FSDP instance exists. if options.full_state_dict: state_dict_config = FullStateDictConfig( offload_to_cpu=options.cpu_offload, rank0_only=options.cpu_offload ) optim_state_dict_config = FullOptimStateDictConfig( offload_to_cpu=options.cpu_offload, rank0_only=(options.cpu_offload or options.broadcast_from_rank0), ) state_dict_type = StateDictType.FULL_STATE_DICT else: state_dict_config = ShardedStateDictConfig( offload_to_cpu=options.cpu_offload, ) optim_state_dict_config = ShardedOptimStateDictConfig( offload_to_cpu=options.cpu_offload, ) state_dict_type = StateDictType.SHARDED_STATE_DICT @contextlib.contextmanager def fsdp_state_dict_type_without_warning( module, state_dict_type, state_dict_config, optim_state_dict_config, ): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="FSDP.state_dict_type", category=FutureWarning ) with FSDP.state_dict_type( module=module, state_dict_type=state_dict_type, state_dict_config=state_dict_config, optim_state_dict_config=optim_state_dict_config, ): yield fsdp_context = functools.partial( fsdp_state_dict_type_without_warning, module=model, state_dict_type=state_dict_type, state_dict_config=state_dict_config, optim_state_dict_config=optim_state_dict_config, ) else: fsdp_context = contextlib.nullcontext return _StateDictInfo( **asdict(options), fqn_param_mapping=fqn_param_mapping, shared_params_mapping=shared_params_mapping, submodule_prefixes=submodule_prefixes, fsdp_context=fsdp_context, fsdp_modules=cast(list[nn.Module], fsdp_modules), handle_model=not optim_only, handle_optim=(len(optims) > 0), ) def _verify_state_dict( model_state_dict: dict[str, ValueType], optim_state_dict: OptimizerStateType, info: _StateDictInfo, ) -> None: for module in info.fsdp_modules: fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module) assert fsdp_state is not None, "Expected a fsdp_state with a fsdp module." # Verify if the model_state_dict and optim_state_dict are valid. This API # should give the users an explicit error message to debug or report. if ( info.handle_model and not model_state_dict and not info.submodule_prefixes and not info.ignore_frozen_params and not (info.cpu_offload and info.full_state_dict) and info.strict and not info.broadcast_from_rank0 ): raise RuntimeError( "The option indicates that model state_dict is required to save " "or load, but model state_dict is empty." f"rank = {dist.get_rank()=}." ) if info.handle_optim: if ( not optim_state_dict and not (info.cpu_offload and info.full_state_dict) and (not info.broadcast_from_rank0) ): raise RuntimeError( "The option indicates that model state_dict is required to save, " f"or load but optim state_dict is empty. {optim_state_dict}" ) for key in model_state_dict.keys(): if _FLAT_PARAM in key: raise RuntimeError( f"{key} contains {_FLAT_PARAM}. This can happen if the model " "is not the root module." ) def _state_dict_fn(obj: Union[nn.Module, torch.optim.Optimizer], api: str) -> Callable: call = getattr(obj, api) if call in _patched_state_dict: call = functools.partial(getattr(obj.__class__, api), self=obj) return call def _maybe_full_or_cpu_state_dict( state_dict: dict[str, Any], info: _StateDictInfo ) -> dict[str, Any]: if info.full_state_dict: ranks_only = ( () if (not info.cpu_offload or not torch.distributed.is_initialized()) else (0,) ) return _gather_state_dict( state_dict, cpu_offload=info.cpu_offload, ranks_only=ranks_only ) elif info.cpu_offload: return _offload_state_dict_to_cpu(state_dict) else: return state_dict @torch.no_grad() def _get_model_state_dict( model: nn.Module, info: _StateDictInfo ) -> dict[str, ValueType]: if not info.handle_model: return {} with info.fsdp_context(): state_dict = _state_dict_fn(model, "state_dict")() for key in list(state_dict.keys()): fqns = _get_fqns(model, key) assert len(fqns) == 1, (key, fqns) fqn = next(iter(fqns)) if fqn != key: # As we only support FSDP, DDP, and TP, the only cases are # wrapper-based DDP and compiler. Verify if the assumption # is correct. def verify(key, fqn) -> bool: if len(fqn) >= len(key): return False fqn_split = fqn.split(".") key_split = key.split(".") fqn_idx = 0 for key_idx, key_name in enumerate(key_split): if key_name == fqn_split[fqn_idx]: fqn_idx += 1 if fqn_idx == len(fqn_split): return key_idx == len(key_split) - 1 elif key_name in ("module", "_orig_mod"): continue else: return False return True if not verify(key, fqn): raise RuntimeError(f"An unexpected key, {key}, exists. FQN is {fqn}") state_dict[fqn] = state_dict.pop(key) if info.submodule_prefixes: new_state_dict: dict[str, ValueType] = {} # TODO: make this faster. for fqn in state_dict.keys(): for prefix in info.submodule_prefixes: if not fqn.startswith(prefix): continue if info.keep_submodule_prefixes: new_state_dict[fqn] = state_dict[fqn] else: new_fqn = fqn[len(prefix) :] new_state_dict[new_fqn] = state_dict[fqn] state_dict = new_state_dict if info.ignore_frozen_params: for key, param in model.named_parameters(): if param.requires_grad: continue fqns = _get_fqns(model, key) for fqn in fqns: state_dict.pop(fqn) for key, p in list(state_dict.items()): if torch.is_tensor(p) and p.is_meta: state_dict.pop(key) return _maybe_full_or_cpu_state_dict(state_dict, info) @torch.no_grad() def _load_model_state_dict( model: nn.Module, state_dict: dict[str, ValueType], info: _StateDictInfo, ) -> _IncompatibleKeys: if not info.handle_model or (not state_dict and not info.broadcast_from_rank0): return _IncompatibleKeys({}, {}) local_state_dict = {} for key, value in _iterate_valid_model_state(model): fqns = _get_fqns(model, key) fqns_with_prefix = _get_fqns( model, key, skip_ddp_prefix=False, skip_compiler_prefix=False ) for fqn, fqn_with_prefix in zip(fqns, fqns_with_prefix): if ( not info.broadcast_from_rank0 or dist.get_rank() == 0 ) and fqn != fqn_with_prefix: load_value = state_dict.pop(fqn, None) if load_value is None: if info.strict: raise RuntimeError(f"Missing key: {fqn}.") else: state_dict[fqn_with_prefix] = load_value local_state_dict[fqn_with_prefix] = value assign = False if info.broadcast_from_rank0 or info.full_state_dict: devices = set() for key, value in local_state_dict.items(): if torch.is_tensor(value) and value.dim() > 0: devices.add(value.device) # In lora state_dict, there could be multiple devices, with meta device inside. # Take the other device in the broadcast/distribtue, and set assign to True if torch.device("meta") in devices: devices.remove(torch.device("meta")) assign = True if len(devices) == 0: devices.add(dist.distributed_c10d._get_pg_default_device()) elif len(devices) > 1: raise ValueError("Multiple devices found") if info.broadcast_from_rank0: _broadcast_state_dict( state_dict, local_state_dict, device=devices.pop(), strict=info.strict, cpu_offload=info.cpu_offload, ) elif info.full_state_dict: _distribute_state_dict(state_dict, local_state_dict, device=devices.pop()) for fqn, local_state in local_state_dict.items(): state_dict[fqn] = local_state with info.fsdp_context(): return cast( _IncompatibleKeys, _state_dict_fn(model, "load_state_dict")( state_dict=state_dict, strict=info.strict, assign=assign ), ) def _init_optim_state(optim: torch.optim.Optimizer) -> None: """ Initialize optim states by calling the step() with zero grads. """ if optim.state: # The optimizer state is initialized. return # There are some stateless optimizers like SGD. These optimizer will # not return in the above condition. So if gradients exist, we should also # return. If gradients do not exist, the following initialization should # not disturb SGD because the gradients and lr are both zero. for param_group in optim.param_groups: for param in param_group[_PARAMS]: if param.grad is not None: return for param_group in optim.param_groups: for param in param_group[_PARAMS]: if param.requires_grad: param.grad = torch.zeros_like(param) # Some optimizers will update parameters regardless of grads due to lr, so # make lr to zero when calling `step()`. lrs = [] for param_group in optim.param_groups: if "lr" in param_group: lrs.append(param_group["lr"]) param_group["lr"] = ( torch.tensor(0.0) if isinstance(param_group["lr"], torch.Tensor) else 0.0 ) optim.step(closure=None) # Whether to recover the "lr" should not matter too much as we will # restore checkpointing later. for param_group in optim.param_groups: if "lr" in param_group: param_group["lr"] = lrs.pop(0) optim.zero_grad(set_to_none=True) def _flatten_optim_state_dict(state_dict: OptimizerStateType) -> dict[str, ValueType]: """ This API flattens the optimizer state_dict to support optimizer resharding for MPMD, e.g., pipeline parallelism. Without the API, the original optimizer state_dict looks like: { "state": { "layer1.weight": { "step": 10, "exp_avg": SomeTensor, "exp_avg_sq": SomeTensor }, "layer2.weight": { "step": 10, "exp_avg": SomeTensor, "exp_avg_sq": SomeTensor }, }, "param_group": [ { "lr": 0.0, "betas": (0.9, 0.95), ..., "params": ["layer1.weight", "layer2.weight"] } ] } With this API, the optimizer state_dict looks like: { "state.layer1.weight.step": 10, "state.layer2.weight.step": 10, "state.layer1.weight.exp_avg": SomeTensor, "state.layer2.weight.exp_avg": SomeTensor, "state.layer1.weight.exp_avg_sq": SomeTensor, "state.layer2.weight.exp_avg_sq": SomeTensor, "param_group.layer1.weight.lr" : 0.1, "param_group.layer2.weight.lr" : 0.1, "param_group.layer1.weight.betas" : (0.9, 0.95), "param_group.layer2.weight.betas" : (0.9, 0.95), } Note that if any of the value is a container, like the betas in the example, this API won't flattent it. """ def _raise_if_type_not_supported(v): if not isinstance(v, (torch.Tensor, int, float)): raise NotImplementedError( "Flattening optimizer state_dict only supports " "tensor, int, float states now. " f"Type is {type(v)}." ) ret: dict[str, ValueType] = {} for fqn, state in cast(DictValueType, state_dict[_STATE]).items(): for k, v in cast(DictValueType, state).items(): _raise_if_type_not_supported(v) ret[f"{_STATE}.{fqn}.{k}"] = v for param_group in cast(ListDictValueType, state_dict[_PG]): fqns = param_group.pop(_PARAMS) for fqn in cast(list[str], fqns): for k, v in param_group.items(): ret[f"{_PG}.{fqn}.{k}"] = v return ret def _unflatten_optim_state_dict( optim: torch.optim.Optimizer, state_dict: dict[str, ValueType], info: _StateDictInfo, ) -> OptimizerStateType: """ This API unflattens the state_dict generated by _flatten_optim_state_dict(). See the docstring of _flatten_optim_state_dict() for more detail. """ state: DictValueType = {} pg_state: ListDictValueType = [] return_osd: OptimizerStateType = {_STATE: state, _PG: pg_state} for param_group in optim.param_groups: pg_state.append({_PARAMS: []}) for param in param_group[_PARAMS]: for fqn in info.fqn_param_mapping[param]: params = pg_state[-1][_PARAMS] assert isinstance(params, list) # typing params.append(fqn) if not param.requires_grad: continue state[fqn] = {} for state_name in optim.state[param].keys(): cast(DictValueType, state[fqn])[state_name] = state_dict[ f"{_STATE}.{fqn}.{state_name}" ] first_param_fqn = cast(list[str], pg_state[-1][_PARAMS])[0] for k in param_group.keys(): if k == _PARAMS: continue value = state_dict[f"{_PG}.{first_param_fqn}.{k}"] if k not in pg_state[-1]: pg_state[-1][k] = value elif pg_state[-1][k] != value: raise RuntimeError( "All the parameters in the same parameter group should have " f"the same saved param_group value. But {first_param_fqn}.{k} " f"is {value} while other(s) is {pg_state[-1][k]}." ) return return_osd @torch.no_grad() def _get_optim_state_dict( model: nn.Module, optimizers: tuple[torch.optim.Optimizer, ...], info: _StateDictInfo, ) -> OptimizerStateType: if not info.handle_optim: return {} optim_state_dict: OptimizerStateType = {_STATE: {}, _PG: []} for optim in optimizers: _init_optim_state(optim) osd = _state_dict_fn(optim, "state_dict")() if info.fsdp_modules: with info.fsdp_context(): osd = FSDP.optim_state_dict(model, optim, osd) # We need to specially handle FlatParameter FSDP as # FlatParameter FSDP converts the FQNs. # There are no easy ways to do this conversion systematically. # We can only use a string replacment without correctness check. if not osd: continue for k in list(osd[_STATE].keys()): if "_orig_mod" in k: osd[_STATE][k.replace("_orig_mod.", "")] = osd[_STATE].pop(k) for g in osd[_PG]: params = [k.replace("_orig_mod.", "") for k in g[_PARAMS]] g[_PARAMS] = params else: params = list(chain.from_iterable(g[_PARAMS] for g in optim.param_groups)) param_pid_mapping = dict(zip(params, range(len(params)))) fqn_pid_mapping = {} for key, param in model.named_parameters(): fqns = _get_fqns(model, key) assert len(fqns) == 1 fqn = next(iter(fqns)) if param not in param_pid_mapping: continue pid = param_pid_mapping[param] fqn_pid_mapping[fqn] = pid fqn_pid_mapping[pid] = fqn for key in list(osd[_STATE].keys()): fqn = fqn_pid_mapping[key] osd[_STATE][fqn] = osd[_STATE].pop(key) for group in osd[_PG]: group[_PARAMS] = [fqn_pid_mapping[pid] for pid in group[_PARAMS]] if not osd: continue cast(DictValueType, optim_state_dict[_STATE]).update(osd[_STATE]) cast(ListDictValueType, optim_state_dict[_PG]).extend(osd[_PG]) if info.flatten_optimizer_state_dict: optim_state_dict = cast( OptimizerStateType, _flatten_optim_state_dict(optim_state_dict) ) return _maybe_full_or_cpu_state_dict(optim_state_dict, info) def _split_optim_state_dict( model: nn.Module, optim: torch.optim.Optimizer, optim_state_dict: OptimizerStateType, info: _StateDictInfo, ) -> OptimizerStateType: """ Extract the corresponding optim state_dict from ``optim_state_dict`` for ``optim`` and return the result optim state_dict. Args: model (nn.Module): the root model. optim (torch.optim.Optimizer): the optimizer. optim_state_dict (Dict[str, ValueType]): the superset optim state_dict that contains the optim state_dict of ``optim``. info (_StateDictInfo): state dict information. Returns: The optim state_dict of ``optim``. """ state: DictValueType = {} pg_state: ListDictValueType = [] return_osd: OptimizerStateType = {_STATE: state, _PG: pg_state} pg_mapping: dict[int, int] = {} if all( isinstance(k, int) for k in cast(DictValueType, optim_state_dict[_STATE]).keys() ): return optim_state_dict for param_group in optim.param_groups: pg_state.append({_PARAMS: []}) for param in param_group[_PARAMS]: for fqn in info.fqn_param_mapping[param]: if fqn in info.shared_params_mapping: in_params = False for loaded_param_group in cast( ListDictValueType, optim_state_dict[_PG] ): if fqn in cast(list[str], loaded_param_group[_PARAMS]): in_params = True break else: in_params = True if not in_params: continue params = pg_state[-1][_PARAMS] assert isinstance(params, list) params.append(fqn) if param.requires_grad: state[fqn] = cast(DictValueType, optim_state_dict[_STATE])[fqn] for loaded_param_group in cast( ListDictValueType, optim_state_dict[_PG] ): if fqn in cast(list[str], loaded_param_group[_PARAMS]): pg_mapping[id(loaded_param_group)] = len(return_osd[_PG]) - 1 for param_group in cast(ListDictValueType, optim_state_dict[_PG]): idx = pg_mapping.get(id(param_group), -1) if idx == -1: continue for key, value in param_group.items(): if key == _PARAMS: continue # TODO: check if value is the same if exists. pg_state[idx][key] = value return return_osd @torch.no_grad() def _load_optim_state_dict( model: nn.Module, optimizers: tuple[torch.optim.Optimizer, ...], state_dict: OptimizerStateType, info: _StateDictInfo, ) -> None: if not info.handle_optim: return for optim in optimizers: _init_optim_state(optim) if state_dict: if _STATE in state_dict: optim_state_dict = _split_optim_state_dict( model, optim, state_dict, info ) else: optim_state_dict = _unflatten_optim_state_dict( optim, cast(dict[str, ValueType], state_dict), info ) else: optim_state_dict = {} if info.fsdp_modules: # We need to specially handle FlatParameter FSDP as # FlatParameter FSDP converts the FQNs. for original_fqn, _ in model.named_parameters(): fqns = _get_fqns(model, original_fqn) fqns_with_compiler = _get_fqns( model, original_fqn, skip_compiler_prefix=False ) if fqns == fqns_with_compiler: continue assert len(fqns) == 1 fqn = fqns.pop() fqn_with_compiler = fqns_with_compiler.pop() for g in optim_state_dict[_PG]: val = cast(dict[str, Any], g) params = [ key.replace(fqn, fqn_with_compiler) for key in val[_PARAMS] ] val[_PARAMS] = params osd_state = cast(DictValueType, optim_state_dict[_STATE]) for k in list(osd_state.keys()): if fqn in k: osd_state[k.replace(fqn, fqn_with_compiler)] = osd_state.pop(k) with info.fsdp_context(): optim_state_dict = FSDP.optim_state_dict_to_load( model, optim, optim_state_dict ) elif info.full_state_dict: info.full_state_dict = False local_state_dict = _get_optim_state_dict(model, (optim,), info) info.full_state_dict = True device = None def _device(t): if t.dim() > 0: nonlocal device if device is None: device = t.device elif device != t.device: raise ValueError("Device mismatch") return t _ = tree_map_only(torch.Tensor, _device, local_state_dict) assert device is not None flatten_osd, osd_mapping = _flatten_state_dict(optim_state_dict) flatten_local_osd, local_osd_mapping = _flatten_state_dict(local_state_dict) if info.broadcast_from_rank0: _broadcast_state_dict(flatten_osd, flatten_local_osd, device=device) else: _distribute_state_dict(flatten_osd, flatten_local_osd, device=device) # The modifications listed seek to address the problem where optim might possess # dissimilar parameters in comparison to optim_state_dict. This is achieved by # incorporating differential parameters within local, which may result in optim # having additional parameters ultimately. for optim_key in flatten_osd.keys(): if optim_key not in flatten_local_osd: assert optim_key in osd_mapping flatten_local_osd[optim_key] = flatten_osd[optim_key] local_osd_mapping[optim_key] = osd_mapping[optim_key] optim_state_dict = _unflatten_state_dict( flatten_local_osd, local_osd_mapping ) # Note that we do not have to convert the FQN back to param id here if # order in optim.param_groups[idx][_PARAMS] is the same as the one in # optim_state_dict[_PG][idx][_PARAMS]. _state_dict_fn(optim, "load_state_dict")(state_dict=optim_state_dict)
[docs]def get_model_state_dict( model: nn.Module, *, submodules: Optional[set[nn.Module]] = None, options: Optional[StateDictOptions] = None, ) -> dict[str, ValueType]: """ Return the model state_dict of ``model``. See ``get_state_dict`` for the detail usage. Args: model (nn.Module): the nn.Module to the model. submodules (deprecated): Optional[Set[nn.Module]]: only return the model parameters that belong to the submodules. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be returned. See `StateDictOptions` for the details. Returns: The state_dict for ``model``. :rtype: typing.Dict[str, ValueType] """ with _gc_context(): info = _verify_options( model, (), optim_only=False, submodules=submodules, options=options, ) model_state_dict = _get_model_state_dict(model, info) _verify_state_dict(model_state_dict, {}, info) return model_state_dict
[docs]def get_optimizer_state_dict( model: nn.Module, optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]], *, submodules: Optional[set[nn.Module]] = None, options: Optional[StateDictOptions] = None, ) -> OptimizerStateType: """ Return the combined state_dict for optimizers. See ``get_state_dict`` for the detail usage. Args: model (nn.Module): the nn.Module to the model. optimizers (Union[None, Optimizer, Iterable[Optimizer]]): The optimizers that are used to optimize ``model``. submodules (deprecated): Optional[Set[nn.Module]]: only return the model parameters that belong to the submodules. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be returned. See `StateDictOptions` for the details. Returns: The state_dict for ``optimizers``. :rtype: OptimizerStateType """ with _gc_context(): optimizers = ( (optimizers,) if isinstance(optimizers, torch.optim.Optimizer) else tuple(optimizers) ) info = _verify_options( model, optimizers, optim_only=True, submodules=submodules, options=options, ) optim_state_dict = _get_optim_state_dict(model, optimizers, info) _verify_state_dict({}, optim_state_dict, info) return optim_state_dict
[docs]def get_state_dict( model: nn.Module, optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]], *, submodules: Optional[set[nn.Module]] = None, options: Optional[StateDictOptions] = None, ) -> tuple[dict[str, ValueType], OptimizerStateType]: """ Return the model state_dict and optimizers state_dict. ``get_state_dict`` can process any module that is parallelized by PyTorch FSDP/fully_shard, DDP/replicate, tensor_parallel/parallelize_module, and any combination of these parallelisms. The main functions of ``get_state_dict`` are: 1.) returning a model and optimizer state_dict that can be resharded with a different number of trainers and/or different parallelisms. 2.) hiding the parallelism-specific state_dict APIs. Users don't have to call these APIs. 3.) sanity checking the result state_dict. The keys of the result state dictionary are the canonical FQNs (Fully Qualified Names). A canonical FQN refers to the FQN based on a parameter's position in an nn.Module hierarchy. More specifically, a canonical FQN to a parameter is the FQN returned by ``module.named_parameters()`` or ``module.named_buffers()`` when the module is not distributed by any parallelisms. Since the optimizer internally uses parameter IDs to represent a parameter, there will be a conversion from the parameter IDs to the canonical FQNs when calling this API. ``get_state_dict`` can also process a module that is not parallelized. In such a case, ``get_state_dict`` only performs one function -- converting the optimizer parameter IDs to the canonical FQNs. Example: >>> # xdoctest: +SKIP >>> import torch >>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP >>> from torch.nn.parallel import DistributedDataParallel as DDP >>> from torch.distributed.checkpoint.state_dict import get_state_dict >>> fsdp_model = FSDP(copy.deepcopy(model)) >>> fsdp_optim = torch.optim.Adam(model.parameters(), lr=1e-3) >>> ddp_model = DDP(copy.deepcopy(model)) >>> ddp_optim = torch.optim.Adam(model.parameters(), lr=1e-3) >>> ddp_state_dict, ddp_optim_state_dict = get_state_dict(ddp_model, ddp_optim) >>> fsdp_state_dict, fsdp_optim_state_dict = get_state_dict(fsdp_model, fsdp_optim) >>> # if we simply call ddp_model.state_dict() and fsdp_model.state_dict(), >>> # the asserts will fail. >>> assert ddp_state_dict == fsdp_state_dict >>> assert ddp_optim_state == fsdp_optim_state_dict Args: model (nn.Module): the nn.Module to the model. optimizers (Union[None, Optimizer, Iterable[Optimizer]]): The optimizers that are used to optimize ``model``. submodules (deprecated): Optional[Set[nn.Module]]: only return the model parameters that belong to the submodules. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be returned. See `StateDictOptions` for the details. Returns: ``Tuple`` that contain model state_dict and optimizer state_dict. :rtype: typing.Tuple[typing.Dict[str, ValueType], OptimizerStateType] """ with _gc_context(): optimizers = ( (optimizers,) if isinstance(optimizers, torch.optim.Optimizer) else tuple(optimizers) ) info = _verify_options( model, optimizers, optim_only=False, submodules=submodules, options=options, ) model_state_dict = _get_model_state_dict(model, info) optim_state_dict = _get_optim_state_dict(model, optimizers, info) _verify_state_dict(model_state_dict, optim_state_dict, info) return model_state_dict, optim_state_dict
def _unflatten_model_state_dict( model: nn.Module, state_dict: Union[dict[nn.Module, dict[str, ValueType]], dict[str, ValueType]], ) -> dict[str, ValueType]: if not state_dict: return {} if isinstance(next(iter(state_dict.keys())), nn.Module): warnings.warn( "Passing model_state_dict as a ``Dict[nn.Module, Dict[str, Any]]``" "is deprecated and will be removed in 2.5. If you need this " "feature, please preprocessing the model_state_dict to achieve the " "same functionality.", FutureWarning, ) cast_state_dict = cast(dict[nn.Module, dict[str, ValueType]], state_dict) new_state_dict: dict[str, ValueType] = {} for submodule, sub_state_dict in cast_state_dict.items(): for name, m in model.named_modules(): if m != submodule: continue fqns = _get_fqns(model, name) assert len(fqns) == 1, "FQNs for a submodule should only have 1 element" prefix = f"{next(iter(fqns))}." new_state_dict.update( {prefix + subfqn: value for subfqn, value in sub_state_dict.items()} ) return new_state_dict else: return cast(dict[str, ValueType], state_dict)
[docs]def set_model_state_dict( model: nn.Module, model_state_dict: dict[str, ValueType], *, options: Optional[StateDictOptions] = None, ) -> _IncompatibleKeys: """Load the model state_dict. The counterpart of ``get_model_state_dict`` to set the state_dict to the model. See ``set_state_dict`` for the detail usage. Args: model (nn.Module): the nn.Module to the model. model_state_dict: (Dict[str, ValueType]): the model state_dict to load. If the key of the ``model_state_dict`` is nn.Module, the key is a submodule of ``model`` and the value should be the state_dict of the submodule. When loading the state_dict, the prefix of the submodule will be append to the state_dict. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be loaded. See `StateDictOptions` for the details. Returns: ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields: * **missing_keys** is a list of str containing the missing keys * **unexpected_keys** is a list of str containing the unexpected keys :type model_state_dict: typing.Dict[str, ValueType] """ model_state_dict: dict[str, ValueType] = _unflatten_model_state_dict( model, model_state_dict ) with _gc_context(): info = _verify_options(model, (), optim_only=False, options=options) _verify_state_dict(model_state_dict, {}, info) return _load_model_state_dict(model, model_state_dict, info)
[docs]def set_optimizer_state_dict( model: nn.Module, optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]], optim_state_dict: OptimizerStateType, *, options: Optional[StateDictOptions] = None, ) -> None: """Load the optimizers state_dict. The counterpart of ``get_optimizer_state_dict`` to set the state_dict to the optimizers. See ``set_state_dict`` for the detail usage. Args: model (nn.Module): the nn.Module to the model. optimizers (Union[Optimizer, Iterable[Optimizer]]): The optimizers that are used to optimize ``model``. optim_state_dict: OptimizerStateType: the optimizer state_dict to load. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be loaded. See `StateDictOptions` for the details. Returns: None :type optim_state_dict: typing.OptimizerStateType """ with _gc_context(): optimizers = ( (optimizers,) if isinstance(optimizers, torch.optim.Optimizer) else tuple(optimizers) ) info = _verify_options(model, optimizers, optim_only=True, options=options) _verify_state_dict({}, optim_state_dict, info) _load_optim_state_dict(model, optimizers, optim_state_dict, info)
[docs]def set_state_dict( model: nn.Module, optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]], *, model_state_dict: dict[str, ValueType], optim_state_dict: OptimizerStateType, options: Optional[StateDictOptions] = None, ) -> _IncompatibleKeys: """Load the model state_dict and optimizers state_dict. The counterpart of ``get_state_dict`` to set the state_dict to the model and optimizers. The given ``model_state_dict`` and ``optim_state_dict`` do not have to be returned by ``get_state_dict`` but must meet the following requirements: 1) all FQNs are canonical FQNs as defined in ``get_state_dict``, 2) if a tensor is sharded, it must be either a ShardedTensor or DTensor, 3) optimizer state_dict cannot contain the parameter IDs; the keys should be the canonical FQNs. Args: model (nn.Module): the nn.Module to the model. optimizers (Union[Optimizer, Iterable[Optimizer]]): The optimizers that are used to optimize ``model``. model_state_dict: (Union[Dict[nn.Module, Dict[str, ValueType]], Dict[str, ValueType]]): the model state_dict to load. If the key of the ``model_state_dict`` is nn.Module, the key is a submodule of ``model`` and the value should be the state_dict of the submodule. When loading the state_dict, the prefix of the submodule will be append to the state_dict. optim_state_dict: OptimizerStateType: the optimizer state_dict to load. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be loaded. See `StateDictOptions` for the details. Returns: ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields: * **missing_keys** is a list of str containing the missing keys of the model state_dict. * **unexpected_keys** is a list of str containing the unexpected keys of the model state_dict. :type model_state_dict: typing.Dict[str, ValueType] :type optim_state_dict: typing.OptimizerStateType """ model_state_dict: dict[str, ValueType] = _unflatten_model_state_dict( model, model_state_dict ) with _gc_context(): optimizers = ( (optimizers,) if isinstance(optimizers, torch.optim.Optimizer) else tuple(optimizers) ) info = _verify_options( model, optimizers, optim_only=not model_state_dict, options=options ) _verify_state_dict(model_state_dict, optim_state_dict, info) _load_optim_state_dict(model, optimizers, optim_state_dict, info) return _load_model_state_dict(model, model_state_dict, info)
# TODO: correct the state_dict function signature. # TODO: this API is not yet fully tested. Make it private @no_type_check def _patch_model_state_dict( model: nn.Module, *, options: Optional[StateDictOptions] = None, ) -> None: """Patch the ``state_dict`` and ``load_state_dict`` attributes of ``model``. Patch the ``state_dict`` and ``load_state_dict`` attributes of ``model`` to be a partial function to call ``get_state_dict`` and ``set_state_dict``. Example: from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.checkpoint.state_dict import patch_model_state_dict model = fsdp(model) patch_model_state_dict(model) Args: model (nn.Module): the nn.Module to the model. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be loaded. See `StateDictOptions` for the details. Returns: None """ _state_dict_call = functools.partial( get_model_state_dict, model=model, options=options, ) def state_dict_call(): return _state_dict_call() model.state_dict = state_dict_call _load_state_dict_call = functools.partial( set_model_state_dict, model=model, options=options, ) def load_state_dict_call(state_dict: dict[str, Any]): _load_state_dict_call(model_state_dict=state_dict) model.load_state_dict = load_state_dict_call _patched_state_dict.add(state_dict_call) _patched_state_dict.add(load_state_dict_call) # TODO: correct the load_state_dict function signature. # TODO: this API is not yet fully tested. Make it private @no_type_check def _patch_optimizer_state_dict( model: nn.Module, *, optimizers: tuple[torch.optim.Optimizer, ...], options: Optional[StateDictOptions] = None, ) -> None: """Patch the ``state_dict`` and ``load_state_dict`` attributes of ``optimizers``. Patch the ``state_dict`` and ``load_state_dict`` attributes of ``optimizers`` to be a partial function to call ``get_state_dict`` and ``set_state_dict``. Note that if there are multiple optimizers, all of the optimizers will be patched. So users only need to call one of the state_dict() to get the full result. Example: from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.checkpoint.state_dict import patch_model_state_dict model = fsdp(model) patch_model_state_dict(model) Args: model (nn.Module): the nn.Module to the model. options (StateDictOptions): the options to control how model state_dict and optimizer state_dict should be loaded. See `StateDictOptions` for the details. Returns: None """ _state_dict_call = functools.partial( get_optimizer_state_dict, model=model, optimizers=optimizers, options=options, ) def state_dict_call(): return _state_dict_call() _load_state_dict_call = functools.partial( set_optimizer_state_dict, model=model, optimizers=optimizers, options=options, ) def load_state_dict_call(state_dict: dict[str, Any]): _load_state_dict_call(optim_state_dict=state_dict) _patched_state_dict.add(state_dict_call) _patched_state_dict.add(load_state_dict_call) optimizers = ( (optimizers,) if isinstance(optimizers, torch.optim.Optimizer) else tuple(optimizers) ) for optim in optimizers: optim.state_dict = state_dict_call optim.load_state_dict = load_state_dict_call

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources