torch.cond
==============
cond_branch_class_method
^^^^^^^^^^^^^^^^^^^^^^^^

.. note::

    Tags: :doc:`torch.dynamic-shape <torch.dynamic-shape>`, :doc:`torch.cond <torch.cond>`

    Support Level: SUPPORTED

Original source code:

.. code-block:: python

    import torch
    
    from functorch.experimental.control_flow import cond
    
    
    class MySubModule(torch.nn.Module):
        def foo(self, x):
            return x.cos()
    
        def forward(self, x):
            return self.foo(x)
    
    
    class CondBranchClassMethod(torch.nn.Module):
        """
        The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
          - both branches must take the same args, which must also match the branch args passed to cond.
          - both branches must return a single tensor
          - returned tensor must have the same tensor metadata, e.g. shape and dtype
          - branch function can be free function, nested function, lambda, class methods
          - branch function can not have closure variables
          - no inplace mutations on inputs or global variables
    
    
        This example demonstrates using class method in cond().
    
        NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
        """
    
        def __init__(self):
            super().__init__()
            self.subm = MySubModule()
    
        def bar(self, x):
            return x.sin()
    
        def forward(self, x):
            return cond(x.shape[0] <= 2, self.subm.forward, self.bar, [x])
    

Result:

.. code-block::

    ExportedProgram:
        class GraphModule(torch.nn.Module):
            def forward(self, l_x_: "f32[3]"):
                    true_graph_0 = self.true_graph_0
                false_graph_0 = self.false_graph_0
                conditional = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [l_x_]);  true_graph_0 = false_graph_0 = l_x_ = None
                getitem: "f32[3]" = conditional[0];  conditional = None
                return (getitem,)
                
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[3]"):
                            cos: "f32[3]" = torch.ops.aten.cos.default(arg0_1);  arg0_1 = None
                    return (cos,)
                    
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[3]"):
                            sin: "f32[3]" = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                    return (sin,)
                    
    Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
    Range constraints: {}
    Equality constraints: []
    


cond_branch_nested_function
^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. note::

    Tags: :doc:`torch.dynamic-shape <torch.dynamic-shape>`, :doc:`torch.cond <torch.cond>`

    Support Level: SUPPORTED

Original source code:

.. code-block:: python

    import torch
    
    from functorch.experimental.control_flow import cond
    
    
    def cond_branch_nested_function(x):
        """
        The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
          - both branches must take the same args, which must also match the branch args passed to cond.
          - both branches must return a single tensor
          - returned tensor must have the same tensor metadata, e.g. shape and dtype
          - branch function can be free function, nested function, lambda, class methods
          - branch function can not have closure variables
          - no inplace mutations on inputs or global variables
    
        This example demonstrates using nested function in cond().
    
        NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
        """
    
        def true_fn(x):
            def inner_true_fn(y):
                return x + y
    
            return inner_true_fn(x)
    
        def false_fn(x):
            def inner_false_fn(y):
                return x - y
    
            return inner_false_fn(x)
    
        return cond(x.shape[0] < 10, true_fn, false_fn, [x])
    

Result:

.. code-block::

    ExportedProgram:
        class GraphModule(torch.nn.Module):
            def forward(self, l_x_: "f32[3]"):
                    true_graph_0 = self.true_graph_0
                false_graph_0 = self.false_graph_0
                conditional = torch.ops.higher_order.cond(True, true_graph_0, false_graph_0, [l_x_]);  true_graph_0 = false_graph_0 = l_x_ = None
                getitem: "f32[3]" = conditional[0];  conditional = None
                return (getitem,)
                
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[3]"):
                            add: "f32[3]" = torch.ops.aten.add.Tensor(arg0_1, arg0_1);  arg0_1 = None
                    return (add,)
                    
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[3]"):
                            sub: "f32[3]" = torch.ops.aten.sub.Tensor(arg0_1, arg0_1);  arg0_1 = None
                    return (sub,)
                    
    Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
    Range constraints: {}
    Equality constraints: []
    


cond_branch_nonlocal_variables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. note::

    Tags: :doc:`torch.dynamic-shape <torch.dynamic-shape>`, :doc:`torch.cond <torch.cond>`

    Support Level: SUPPORTED

Original source code:

.. code-block:: python

    import torch
    
    from functorch.experimental.control_flow import cond
    
    
    def cond_branch_nonlocal_variables(x):
        """
        The branch functions (`true_fn` and `false_fn`) passed to cond() must follow these rules:
          - both branches must take the same args, which must also match the branch args passed to cond.
          - both branches must return a single tensor
          - returned tensor must have the same tensor metadata, e.g. shape and dtype
          - branch function can be free function, nested function, lambda, class methods
          - branch function can not have closure variables
          - no inplace mutations on inputs or global variables
    
        This example demonstrates how to rewrite code to avoid capturing closure variables in branch functions.
    
        The code below will not work because capturing closure variables is not supported.
        ```
        my_tensor_var = x + 100
        my_primitive_var = 3.14
    
        def true_fn(y):
            nonlocal my_tensor_var, my_primitive_var
            return y + my_tensor_var + my_primitive_var
    
        def false_fn(y):
            nonlocal my_tensor_var, my_primitive_var
            return y - my_tensor_var - my_primitive_var
    
        return cond(x.shape[0] > 5, true_fn, false_fn, [x])
        ```
    
        NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
        """
    
        my_tensor_var = x + 100
        my_primitive_var = 3.14
    
        def true_fn(x, y, z):
            return x + y + z
    
        def false_fn(x, y, z):
            return x - y - z
    
        return cond(
            x.shape[0] > 5,
            true_fn,
            false_fn,
            [x, my_tensor_var, torch.tensor(my_primitive_var)],
        )
    

Result:

.. code-block::

    ExportedProgram:
        class GraphModule(torch.nn.Module):
            def forward(self, _lifted_tensor_constant0: "f32[]", l_x_: "f32[6]"):
                    add: "f32[6]" = torch.ops.aten.add.Tensor(l_x_, 100)
                
                    lift_fresh_copy: "f32[]" = torch.ops.aten.lift_fresh_copy.default(_lifted_tensor_constant0);  _lifted_tensor_constant0 = None
                
                    true_graph_0 = self.true_graph_0
                false_graph_0 = self.false_graph_0
                conditional = torch.ops.higher_order.cond(True, true_graph_0, false_graph_0, [l_x_, add, lift_fresh_copy]);  true_graph_0 = false_graph_0 = l_x_ = add = lift_fresh_copy = None
                getitem: "f32[6]" = conditional[0];  conditional = None
                return (getitem,)
                
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[6]", arg1_1: "f32[6]", arg2_1: "f32[]"):
                            add: "f32[6]" = torch.ops.aten.add.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                    add_1: "f32[6]" = torch.ops.aten.add.Tensor(add, arg2_1);  add = arg2_1 = None
                    return (add_1,)
                    
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[6]", arg1_1: "f32[6]", arg2_1: "f32[]"):
                            sub: "f32[6]" = torch.ops.aten.sub.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                    sub_1: "f32[6]" = torch.ops.aten.sub.Tensor(sub, arg2_1);  sub = arg2_1 = None
                    return (sub_1,)
                    
    Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.CONSTANT_TENSOR: 4>, arg=TensorArgument(name='_lifted_tensor_constant0'), target='_lifted_tensor_constant0'), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
    Range constraints: {}
    Equality constraints: []
    


cond_closed_over_variable
^^^^^^^^^^^^^^^^^^^^^^^^^

.. note::

    Tags: :doc:`torch.cond <torch.cond>`, :doc:`python.closure <python.closure>`

    Support Level: SUPPORTED

Original source code:

.. code-block:: python

    import torch
    
    from functorch.experimental.control_flow import cond
    
    
    class CondClosedOverVariable(torch.nn.Module):
        """
        torch.cond() supports branches closed over arbitrary variables.
        """
    
        def forward(self, pred, x):
            def true_fn(val):
                return x * 2
    
            def false_fn(val):
                return x - 2
    
            return cond(pred, true_fn, false_fn, [x + 1])
    

Result:

.. code-block::

    ExportedProgram:
        class GraphModule(torch.nn.Module):
            def forward(self, l_pred_: "b8[]", l_x_: "f32[3, 2]"):
                    true_graph_0 = self.true_graph_0
                false_graph_0 = self.false_graph_0
                conditional = torch.ops.higher_order.cond(l_pred_, true_graph_0, false_graph_0, [l_x_]);  l_pred_ = true_graph_0 = false_graph_0 = l_x_ = None
                getitem: "f32[3, 2]" = conditional[0];  conditional = None
                return (getitem,)
                
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[3, 2]"):
                            mul: "f32[3, 2]" = torch.ops.aten.mul.Tensor(arg0_1, 2);  arg0_1 = None
                    return (mul,)
                    
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[3, 2]"):
                            sub: "f32[3, 2]" = torch.ops.aten.sub.Tensor(arg0_1, 2);  arg0_1 = None
                    return (sub,)
                    
    Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_pred_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
    Range constraints: {}
    Equality constraints: []
    


cond_operands
^^^^^^^^^^^^^

.. note::

    Tags: :doc:`torch.dynamic-shape <torch.dynamic-shape>`, :doc:`torch.cond <torch.cond>`

    Support Level: SUPPORTED

Original source code:

.. code-block:: python

    import torch
    
    from torch.export import Dim
    from functorch.experimental.control_flow import cond
    
    x = torch.randn(3, 2)
    y = torch.ones(2)
    dim0_x = Dim("dim0_x")
    
    def cond_operands(x, y):
        """
        The operands passed to cond() must be:
          - a list of tensors
          - match arguments of `true_fn` and `false_fn`
    
        NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
        """
    
        def true_fn(x, y):
            return x + y
    
        def false_fn(x, y):
            return x - y
    
        return cond(x.shape[0] > 2, true_fn, false_fn, [x, y])
    

Result:

.. code-block::

    ExportedProgram:
        class GraphModule(torch.nn.Module):
            def forward(self, l_x_: "f32[s0, 2]", l_y_: "f32[2]"):
                    sym_size_int: "Sym(s0)" = torch.ops.aten.sym_size.int(l_x_, 0)
                gt: "Sym(s0 > 2)" = sym_size_int > 2;  sym_size_int = None
                true_graph_0 = self.true_graph_0
                false_graph_0 = self.false_graph_0
                conditional = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, [l_x_, l_y_]);  gt = true_graph_0 = false_graph_0 = l_x_ = l_y_ = None
                getitem: "f32[s0, 2]" = conditional[0];  conditional = None
                return (getitem,)
                
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[s0, 2]", arg1_1: "f32[2]"):
                            add: "f32[s0, 2]" = torch.ops.aten.add.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                    return (add,)
                    
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[s0, 2]", arg1_1: "f32[2]"):
                            sub: "f32[s0, 2]" = torch.ops.aten.sub.Tensor(arg0_1, arg1_1);  arg0_1 = arg1_1 = None
                    return (sub,)
                    
    Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None), InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_y_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
    Range constraints: {s0: ValueRanges(lower=2, upper=oo, is_bool=False)}
    Equality constraints: []
    


cond_predicate
^^^^^^^^^^^^^^

.. note::

    Tags: :doc:`torch.dynamic-shape <torch.dynamic-shape>`, :doc:`torch.cond <torch.cond>`

    Support Level: SUPPORTED

Original source code:

.. code-block:: python

    import torch
    
    from functorch.experimental.control_flow import cond
    
    
    def cond_predicate(x):
        """
        The conditional statement (aka predicate) passed to cond() must be one of the following:
          - torch.Tensor with a single element
          - boolean expression
    
        NOTE: If the `pred` is test on a dim with batch size < 2, it will be specialized.
        """
    
        pred = x.dim() > 2 and x.shape[2] > 10
    
        return cond(pred, lambda x: x.cos(), lambda y: y.sin(), [x])
    

Result:

.. code-block::

    ExportedProgram:
        class GraphModule(torch.nn.Module):
            def forward(self, l_x_: "f32[6, 4, 3]"):
                    true_graph_0 = self.true_graph_0
                false_graph_0 = self.false_graph_0
                conditional = torch.ops.higher_order.cond(False, true_graph_0, false_graph_0, [l_x_]);  true_graph_0 = false_graph_0 = l_x_ = None
                getitem: "f32[6, 4, 3]" = conditional[0];  conditional = None
                return (getitem,)
                
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[6, 4, 3]"):
                            cos: "f32[6, 4, 3]" = torch.ops.aten.cos.default(arg0_1);  arg0_1 = None
                    return (cos,)
                    
            class <lambda>(torch.nn.Module):
                def forward(self, arg0_1: "f32[6, 4, 3]"):
                            sin: "f32[6, 4, 3]" = torch.ops.aten.sin.default(arg0_1);  arg0_1 = None
                    return (sin,)
                    
    Graph signature: ExportGraphSignature(input_specs=[InputSpec(kind=<InputKind.USER_INPUT: 1>, arg=TensorArgument(name='l_x_'), target=None)], output_specs=[OutputSpec(kind=<OutputKind.USER_OUTPUT: 1>, arg=TensorArgument(name='getitem'), target=None)])
    Range constraints: {}
    Equality constraints: []