Shortcuts

class torch.nn.ReflectionPad3d(padding)[source]

Pads the input tensor using the reflection of the input boundary.

For N-dimensional padding, use torch.nn.functional.pad().

Parameters

padding (int, tuple) – the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses ($\text{padding\_left}$, $\text{padding\_right}$, $\text{padding\_top}$, $\text{padding\_bottom}$, $\text{padding\_front}$, $\text{padding\_back}$)

Shape:
• Input: $(N, C, D_{in}, H_{in}, W_{in})$ or $(C, D_{in}, H_{in}, W_{in})$.

• Output: $(N, C, D_{out}, H_{out}, W_{out})$ or $(C, D_{out}, H_{out}, W_{out})$, where

$D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}$

$H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}$

$W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}$

Examples:

>>> m = nn.ReflectionPad3d(1)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
>>> m(input)
tensor([[[[[7., 6., 7., 6.],
[5., 4., 5., 4.],
[7., 6., 7., 6.],
[5., 4., 5., 4.]],
[[3., 2., 3., 2.],
[1., 0., 1., 0.],
[3., 2., 3., 2.],
[1., 0., 1., 0.]],
[[7., 6., 7., 6.],
[5., 4., 5., 4.],
[7., 6., 7., 6.],
[5., 4., 5., 4.]],
[[3., 2., 3., 2.],
[1., 0., 1., 0.],
[3., 2., 3., 2.],
[1., 0., 1., 0.]]]]])


## Docs

Access comprehensive developer documentation for PyTorch

View Docs

## Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials