Source code for torch.nn.utils.spectral_norm

"""
Spectral Normalization from https://arxiv.org/abs/1802.05957
"""
import torch
from torch.nn.functional import normalize
from torch.nn.parameter import Parameter


class SpectralNorm(object):

    def __init__(self, name='weight', n_power_iterations=1, dim=0, eps=1e-12):
        self.name = name
        self.dim = dim
        if n_power_iterations <= 0:
            raise ValueError('Expected n_power_iterations to be positive, but '
                             'got n_power_iterations={}'.format(n_power_iterations))
        self.n_power_iterations = n_power_iterations
        self.eps = eps

    def compute_weight(self, module):
        weight = getattr(module, self.name + '_orig')
        u = getattr(module, self.name + '_u')
        weight_mat = weight
        if self.dim != 0:
            # permute dim to front
            weight_mat = weight_mat.permute(self.dim,
                                            *[d for d in range(weight_mat.dim()) if d != self.dim])
        height = weight_mat.size(0)
        weight_mat = weight_mat.reshape(height, -1)
        with torch.no_grad():
            for _ in range(self.n_power_iterations):
                # Spectral norm of weight equals to `u^T W v`, where `u` and `v`
                # are the first left and right singular vectors.
                # This power iteration produces approximations of `u` and `v`.
                v = normalize(torch.matmul(weight_mat.t(), u), dim=0, eps=self.eps)
                u = normalize(torch.matmul(weight_mat, v), dim=0, eps=self.eps)

        sigma = torch.dot(u, torch.matmul(weight_mat, v))
        weight = weight / sigma
        return weight, u

    def remove(self, module):
        weight = getattr(module, self.name)
        delattr(module, self.name)
        delattr(module, self.name + '_u')
        delattr(module, self.name + '_orig')
        module.register_parameter(self.name, torch.nn.Parameter(weight))

    def __call__(self, module, inputs):
        if module.training:
            weight, u = self.compute_weight(module)
            setattr(module, self.name, weight)
            setattr(module, self.name + '_u', u)
        else:
            r_g = getattr(module, self.name + '_orig').requires_grad
            getattr(module, self.name).detach_().requires_grad_(r_g)

    @staticmethod
    def apply(module, name, n_power_iterations, dim, eps):
        fn = SpectralNorm(name, n_power_iterations, dim, eps)
        weight = module._parameters[name]
        height = weight.size(dim)

        u = normalize(weight.new_empty(height).normal_(0, 1), dim=0, eps=fn.eps)
        delattr(module, fn.name)
        module.register_parameter(fn.name + "_orig", weight)
        # We still need to assign weight back as fn.name because all sorts of
        # things may assume that it exists, e.g., when initializing weights.
        # However, we can't directly assign as it could be an nn.Parameter and
        # gets added as a parameter. Instead, we register weight.data as a
        # buffer, which will cause weight to be included in the state dict
        # and also supports nn.init due to shared storage.
        module.register_buffer(fn.name, weight.data)
        module.register_buffer(fn.name + "_u", u)

        module.register_forward_pre_hook(fn)
        return fn


[docs]def spectral_norm(module, name='weight', n_power_iterations=1, eps=1e-12, dim=None): r"""Applies spectral normalization to a parameter in the given module. .. math:: \mathbf{W} &= \dfrac{\mathbf{W}}{\sigma(\mathbf{W})} \\ \sigma(\mathbf{W}) &= \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generaive Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm :math:`\sigma` of the weight matrix calculated using power iteration method. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. This is implemented via a hook that calculates spectral norm and rescales weight before every :meth:`~Module.forward` call. See `Spectral Normalization for Generative Adversarial Networks`_ . .. _`Spectral Normalization for Generative Adversarial Networks`: https://arxiv.org/abs/1802.05957 Args: module (nn.Module): containing module name (str, optional): name of weight parameter n_power_iterations (int, optional): number of power iterations to calculate spectal norm eps (float, optional): epsilon for numerical stability in calculating norms dim (int, optional): dimension corresponding to number of outputs, the default is 0, except for modules that are instances of ConvTranspose1/2/3d, when it is 1 Returns: The original module with the spectal norm hook Example:: >>> m = spectral_norm(nn.Linear(20, 40)) Linear (20 -> 40) >>> m.weight_u.size() torch.Size([20]) """ if dim is None: if isinstance(module, (torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d)): dim = 1 else: dim = 0 SpectralNorm.apply(module, name, n_power_iterations, dim, eps) return module
[docs]def remove_spectral_norm(module, name='weight'): r"""Removes the spectral normalization reparameterization from a module. Args: module (nn.Module): containing module name (str, optional): name of weight parameter Example: >>> m = spectral_norm(nn.Linear(40, 10)) >>> remove_spectral_norm(m) """ for k, hook in module._forward_pre_hooks.items(): if isinstance(hook, SpectralNorm) and hook.name == name: hook.remove(module) del module._forward_pre_hooks[k] return module raise ValueError("spectral_norm of '{}' not found in {}".format( name, module))