Source code for torch.nn.modules.padding

from .module import Module
from .utils import _pair, _quadruple, _ntuple
from .. import functional as F


# TODO: grad_output size asserts in THNN


class _ConstantPadNd(Module):

    def __init__(self, value):
        super(_ConstantPadNd, self).__init__()
        self.value = value

    def forward(self, input):
        return F.pad(input, self.padding, 'constant', self.value)

    def extra_repr(self):
        return 'padding={}, value={}'.format(self.padding, self.value)


[docs]class ConstantPad1d(_ConstantPadNd): r"""Pads the input tensor boundaries with a constant value. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in both boundaries. If a 2-`tuple`, uses (`paddingLeft`, `paddingRight`) Shape: - Input: :math:`(N, C, W_{in})` - Output: :math:`(N, C, W_{out})` where :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ConstantPad1d(2, 3.5) >>> input = torch.randn(1, 2, 4) >>> input (0 ,.,.) = 0.1875 0.5046 -1.0074 2.0005 -0.3540 -1.8645 1.1530 0.0632 [torch.FloatTensor of size (1,2,4)] >>> m(input) (0 ,.,.) = 3.5000 3.5000 0.1875 0.5046 -1.0074 2.0005 3.5000 3.5000 3.5000 3.5000 -0.3540 -1.8645 1.1530 0.0632 3.5000 3.5000 [torch.FloatTensor of size (1,2,8)] >>> # using different paddings >>> m = nn.ConstantPad1d((3, 1), 3.5) >>> m(input) (0 ,.,.) = 3.5000 3.5000 3.5000 0.1875 0.5046 -1.0074 2.0005 3.5000 3.5000 3.5000 3.5000 -0.3540 -1.8645 1.1530 0.0632 3.5000 [torch.FloatTensor of size (1,2,8)] """ def __init__(self, padding, value): super(ConstantPad1d, self).__init__(value) self.padding = _pair(padding)
[docs]class ConstantPad2d(_ConstantPadNd): r"""Pads the input tensor boundaries with a constant value. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ConstantPad2d(2, 3.5) >>> input = torch.randn(1, 2, 2) >>> input (0 ,.,.) = -0.2295 -0.9774 -0.3335 -1.4178 [torch.FloatTensor of size (1,2,2)] >>> m(input) (0 ,.,.) = 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 -0.2295 -0.9774 3.5000 3.5000 3.5000 3.5000 -0.3335 -1.4178 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 [torch.FloatTensor of size (1,6,6)] >>> # using different paddings >>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5) >>> m(input) (0 ,.,.) = 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 3.5000 -0.2295 -0.9774 3.5000 3.5000 3.5000 -0.3335 -1.4178 3.5000 3.5000 3.5000 3.5000 3.5000 [torch.FloatTensor of size (1,5,5)] """ def __init__(self, padding, value): super(ConstantPad2d, self).__init__(value) self.padding = _quadruple(padding)
[docs]class ConstantPad3d(_ConstantPadNd): r"""Pads the input tensor boundaries with a constant value. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 6-`tuple`, uses (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`, `paddingFront`, `paddingBack`) Shape: - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where :math:`D_{out} = D_{in} + \textit{paddingFront} + \textit{paddingBack}` :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ConstantPad3d(3, 3.5) >>> input = torch.randn(16, 3, 10, 20, 30) >>> output = m(input) >>> # using different paddings >>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5) >>> output = m(input) """ def __init__(self, padding, value): super(ConstantPad3d, self).__init__(value) self.padding = _ntuple(6)(padding)
class _ReflectionPadNd(Module): def forward(self, input): return F.pad(input, self.padding, 'reflect') def extra_repr(self): return '{}'.format(self.padding)
[docs]class ReflectionPad1d(_ReflectionPadNd): r"""Pads the input tensor using the reflection of the input boundary. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 2-`tuple`, uses (`paddingLeft`, `paddingRight`) Shape: - Input: :math:`(N, C, W_{in})` - Output: :math:`(N, C, W_{out})` where :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ReflectionPad1d(2) >>> input = torch.arange(8).reshape(1, 2, 4) >>> input (0 ,.,.) = 0 1 2 3 4 5 6 7 [torch.FloatTensor of size (1,2,4)] >>> m(input) (0 ,.,.) = 2 1 0 1 2 3 2 1 6 5 4 5 6 7 6 5 [torch.FloatTensor of size (1,2,8)] >>> # using different paddings >>> m = nn.ReflectionPad1d((3, 1)) >>> m(input) (0 ,.,.) = 3 2 1 0 1 2 3 2 7 6 5 4 5 6 7 6 [torch.FloatTensor of size (1,2,8)] """ def __init__(self, padding): super(ReflectionPad1d, self).__init__() self.padding = _pair(padding)
[docs]class ReflectionPad2d(_ReflectionPadNd): r"""Pads the input tensor using the reflection of the input boundary. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ReflectionPad2d(2) >>> input = torch.arange(9).reshape(1, 1, 3, 3) >>> input (0 ,0 ,.,.) = 0 1 2 3 4 5 6 7 8 [torch.FloatTensor of size (1,1,3,3)] >>> m(input) (0 ,0 ,.,.) = 8 7 6 7 8 7 6 5 4 3 4 5 4 3 2 1 0 1 2 1 0 5 4 3 4 5 4 3 8 7 6 7 8 7 6 5 4 3 4 5 4 3 2 1 0 1 2 1 0 [torch.FloatTensor of size (1,1,7,7)] >>> # using different paddings >>> m = nn.ReflectionPad2d((1, 1, 2, 0)) >>> m(input) (0 ,0 ,.,.) = 7 6 7 8 7 4 3 4 5 4 1 0 1 2 1 4 3 4 5 4 7 6 7 8 7 [torch.FloatTensor of size (1,1,5,5)] """ def __init__(self, padding): super(ReflectionPad2d, self).__init__() self.padding = _quadruple(padding)
class _ReplicationPadNd(Module): def forward(self, input): return F.pad(input, self.padding, 'replicate') def extra_repr(self): return '{}'.format(self.padding)
[docs]class ReplicationPad1d(_ReplicationPadNd): r"""Pads the input tensor using replication of the input boundary. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 2-`tuple`, uses (`paddingLeft`, `paddingRight`) Shape: - Input: :math:`(N, C, W_{in})` - Output: :math:`(N, C, W_{out})` where :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ReplicationPad1d(2) >>> input = torch.arange(8).reshape(1, 2, 4) >>> input (0 ,.,.) = 0 1 2 3 4 5 6 7 [torch.FloatTensor of size (1,2,4)] >>> m(input) (0 ,.,.) = 0 0 0 1 2 3 3 3 4 4 4 5 6 7 7 7 [torch.FloatTensor of size (1,2,8)] >>> # using different paddings >>> m = nn.ReplicationPad1d((3, 1)) >>> m(input) (0 ,.,.) = 0 0 0 0 1 2 3 3 4 4 4 4 5 6 7 7 [torch.FloatTensor of size (1,2,8)] """ def __init__(self, padding): super(ReplicationPad1d, self).__init__() self.padding = _pair(padding)
[docs]class ReplicationPad2d(_ReplicationPadNd): r"""Pads the input tensor using replication of the input boundary. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ReplicationPad2d(2) >>> input = torch.arange(9).reshape(1, 1, 3, 3) >>> input (0 ,0 ,.,.) = 0 1 2 3 4 5 6 7 8 [torch.FloatTensor of size (1,1,3,3)] >>> m(input) (0 ,0 ,.,.) = 0 0 0 1 2 2 2 0 0 0 1 2 2 2 0 0 0 1 2 2 2 3 3 3 4 5 5 5 6 6 6 7 8 8 8 6 6 6 7 8 8 8 6 6 6 7 8 8 8 [torch.FloatTensor of size (1,1,7,7)] >>> # using different paddings >>> m = nn.ReplicationPad2d((1, 1, 2, 0)) >>> m(input) (0 ,0 ,.,.) = 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 3 3 4 5 5 6 6 7 8 8 [torch.FloatTensor of size (1,1,5,5)] """ def __init__(self, padding): super(ReplicationPad2d, self).__init__() self.padding = _quadruple(padding)
[docs]class ReplicationPad3d(_ReplicationPadNd): r"""Pads the input tensor using replication of the input boundary. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 6-`tuple`, uses (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`, `paddingFront`, `paddingBack`) Shape: - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` where :math:`D_{out} = D_{in} + \textit{paddingFront} + \textit{paddingBack}` :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ReplicationPad3d(3) >>> input = torch.randn(16, 3, 8, 320, 480) >>> output = m(input) >>> # using different paddings >>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1)) >>> output = m(input) """ def __init__(self, padding): super(ReplicationPad3d, self).__init__() self.padding = _ntuple(6)(padding)
[docs]class ZeroPad2d(ConstantPad2d): r"""Pads the input tensor boundaries with zero. For `N`d-padding, use :func:`torch.nn.functional.pad()`. Args: padding (int, tuple): the size of the padding. If is `int`, uses the same padding in all boundaries. If a 4-`tuple`, uses (`paddingLeft`, `paddingRight`, `paddingTop`, `paddingBottom`) Shape: - Input: :math:`(N, C, H_{in}, W_{in})` - Output: :math:`(N, C, H_{out}, W_{out})` where :math:`H_{out} = H_{in} + \textit{paddingTop} + \textit{paddingBottom}` :math:`W_{out} = W_{in} + \textit{paddingLeft} + \textit{paddingRight}` Examples:: >>> m = nn.ZeroPad2d(2) >>> input = torch.randn(1, 1, 3, 3) >>> input (0 ,0 ,.,.) = 1.4418 -1.9812 -0.3815 -0.3828 -0.6833 -0.2376 0.1433 0.0211 0.4311 [torch.FloatTensor of size (1,1,3,3)] >>> m(input) (0 ,0 ,.,.) = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.4418 -1.9812 -0.3815 0.0000 0.0000 0.0000 0.0000 -0.3828 -0.6833 -0.2376 0.0000 0.0000 0.0000 0.0000 0.1433 0.0211 0.4311 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 [torch.FloatTensor of size (1,1,7,7)] >>> # using different paddings >>> m = nn.ZeroPad2d((1, 1, 2, 0)) >>> m(input) (0 ,0 ,.,.) = 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.4418 -1.9812 -0.3815 0.0000 0.0000 -0.3828 -0.6833 -0.2376 0.0000 0.0000 0.1433 0.0211 0.4311 0.0000 [torch.FloatTensor of size (1,1,5,5)] """ def __init__(self, padding): super(ZeroPad2d, self).__init__(padding, 0)