Source code for torch.nn.modules.linear

import math

import torch
from torch.nn.parameter import Parameter
from .. import functional as F
from .module import Module


[docs]class Linear(Module): r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b` Args: in_features: size of each input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(N, *, in\_features)` where :math:`*` means any number of additional dimensions - Output: :math:`(N, *, out\_features)` where all but the last dimension are the same shape as the input. Attributes: weight: the learnable weights of the module of shape `(out_features x in_features)` bias: the learnable bias of the module of shape `(out_features)` Examples:: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) """ def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input): return F.linear(input, self.weight, self.bias) def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None )
[docs]class Bilinear(Module): r"""Applies a bilinear transformation to the incoming data: :math:`y = x_1 A x_2 + b` Args: in1_features: size of each first input sample in2_features: size of each second input sample out_features: size of each output sample bias: If set to False, the layer will not learn an additive bias. Default: ``True`` Shape: - Input: :math:`(N, *, \text{in1_features})`, :math:`(N, *, \text{in2_features})` where :math:`*` means any number of additional dimensions. All but the last dimension of the inputs should be the same. - Output: :math:`(N, *, \text{out_features})` where all but the last dimension are the same shape as the input. Attributes: weight: the learnable weights of the module of shape `(out_features x in1_features x in2_features)` bias: the learnable bias of the module of shape `(out_features)` Examples:: >>> m = nn.Bilinear(20, 30, 40) >>> input1 = torch.randn(128, 20) >>> input2 = torch.randn(128, 30) >>> output = m(input1, input2) >>> print(output.size()) """ def __init__(self, in1_features, in2_features, out_features, bias=True): super(Bilinear, self).__init__() self.in1_features = in1_features self.in2_features = in2_features self.out_features = out_features self.weight = Parameter(torch.Tensor(out_features, in1_features, in2_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input1, input2): return F.bilinear(input1, input2, self.weight, self.bias) def extra_repr(self): return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format( self.in1_features, self.in2_features, self.out_features, self.bias is not None )
# TODO: PartialLinear - maybe in sparse?