import math
import torch
from torch.nn.parameter import Parameter
from .. import functional as F
from .module import Module
[docs]class Linear(Module):
r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`
Args:
in_features: size of each input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, in\_features)` where :math:`*` means any number of
additional dimensions
- Output: :math:`(N, *, out\_features)` where all but the last dimension
are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
`(out_features x in_features)`
bias: the learnable bias of the module of shape `(out_features)`
Examples::
>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
"""
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
return F.linear(input, self.weight, self.bias)
def extra_repr(self):
return 'in_features={}, out_features={}, bias={}'.format(
self.in_features, self.out_features, self.bias is not None
)
[docs]class Bilinear(Module):
r"""Applies a bilinear transformation to the incoming data:
:math:`y = x_1 A x_2 + b`
Args:
in1_features: size of each first input sample
in2_features: size of each second input sample
out_features: size of each output sample
bias: If set to False, the layer will not learn an additive bias.
Default: ``True``
Shape:
- Input: :math:`(N, *, \text{in1_features})`, :math:`(N, *, \text{in2_features})`
where :math:`*` means any number of additional dimensions. All but the last
dimension of the inputs should be the same.
- Output: :math:`(N, *, \text{out_features})` where all but the last dimension
are the same shape as the input.
Attributes:
weight: the learnable weights of the module of shape
`(out_features x in1_features x in2_features)`
bias: the learnable bias of the module of shape `(out_features)`
Examples::
>>> m = nn.Bilinear(20, 30, 40)
>>> input1 = torch.randn(128, 20)
>>> input2 = torch.randn(128, 30)
>>> output = m(input1, input2)
>>> print(output.size())
"""
def __init__(self, in1_features, in2_features, out_features, bias=True):
super(Bilinear, self).__init__()
self.in1_features = in1_features
self.in2_features = in2_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in1_features, in2_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input1, input2):
return F.bilinear(input1, input2, self.weight, self.bias)
def extra_repr(self):
return 'in1_features={}, in2_features={}, out_features={}, bias={}'.format(
self.in1_features, self.in2_features, self.out_features, self.bias is not None
)
# TODO: PartialLinear - maybe in sparse?