Source code for torch.distributions.studentT

from numbers import Number
import torch
import math
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions import Chi2
from torch.distributions.utils import broadcast_all


[docs]class StudentT(Distribution): r""" Creates a Student's t-distribution parameterized by `df`. Example:: >>> m = StudentT(torch.tensor([2.0])) >>> m.sample() # Student's t-distributed with degrees of freedom=2 0.1046 [torch.FloatTensor of size 1] Args: df (float or Tensor): degrees of freedom """ arg_constraints = {'df': constraints.positive, 'loc': constraints.real, 'scale': constraints.positive} support = constraints.real has_rsample = True @property def mean(self): m = self.loc.clone() m[self.df <= 1] = float('nan') return m @property def variance(self): m = self.df.clone() m[self.df > 2] = self.scale[self.df > 2].pow(2) * self.df[self.df > 2] / (self.df[self.df > 2] - 2) m[(self.df <= 2) & (self.df > 1)] = float('inf') m[self.df <= 1] = float('nan') return m def __init__(self, df, loc=0., scale=1., validate_args=None): self.df, self.loc, self.scale = broadcast_all(df, loc, scale) self._chi2 = Chi2(df) batch_shape = torch.Size() if isinstance(df, Number) else self.df.size() super(StudentT, self).__init__(batch_shape, validate_args=validate_args)
[docs] def rsample(self, sample_shape=torch.Size()): # NOTE: This does not agree with scipy implementation as much as other distributions. # (see https://github.com/fritzo/notebooks/blob/master/debug-student-t.ipynb). Using DoubleTensor # parameters seems to help. # X ~ Normal(0, 1) # Z ~ Chi2(df) # Y = X / sqrt(Z / df) ~ StudentT(df) shape = self._extended_shape(sample_shape) X = self.df.new(shape).normal_() Z = self._chi2.rsample(sample_shape) Y = X * torch.rsqrt(Z / self.df) return self.loc + self.scale * Y
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) y = (value - self.loc) / self.scale Z = (self.scale.log() + 0.5 * self.df.log() + 0.5 * math.log(math.pi) + torch.lgamma(0.5 * self.df) - torch.lgamma(0.5 * (self.df + 1.))) return -0.5 * (self.df + 1.) * torch.log1p(y**2. / self.df) - Z
[docs] def entropy(self): lbeta = torch.lgamma(0.5 * self.df) + math.lgamma(0.5) - torch.lgamma(0.5 * (self.df + 1)) return (self.scale.log() + 0.5 * (self.df + 1) * (torch.digamma(0.5 * (self.df + 1)) - torch.digamma(0.5 * self.df)) + 0.5 * self.df.log() + lbeta)