Source code for torch.distributions.laplace

from numbers import Number
import torch
from torch.distributions import constraints
from torch.distributions.distribution import Distribution
from torch.distributions.utils import _finfo, broadcast_all


[docs]class Laplace(Distribution): r""" Creates a Laplace distribution parameterized by `loc` and 'scale'. Example:: >>> m = Laplace(torch.tensor([0.0]), torch.tensor([1.0])) >>> m.sample() # Laplace distributed with loc=0, scale=1 0.1046 [torch.FloatTensor of size 1] Args: loc (float or Tensor): mean of the distribution scale (float or Tensor): scale of the distribution """ arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} support = constraints.real has_rsample = True @property def mean(self): return self.loc @property def variance(self): return 2 * self.scale.pow(2) @property def stddev(self): return (2 ** 0.5) * self.scale def __init__(self, loc, scale, validate_args=None): self.loc, self.scale = broadcast_all(loc, scale) if isinstance(loc, Number) and isinstance(scale, Number): batch_shape = torch.Size() else: batch_shape = self.loc.size() super(Laplace, self).__init__(batch_shape, validate_args=validate_args)
[docs] def rsample(self, sample_shape=torch.Size()): shape = self._extended_shape(sample_shape) u = self.loc.new(shape).uniform_(_finfo(self.loc).eps - 1, 1) # TODO: If we ever implement tensor.nextafter, below is what we want ideally. # u = self.loc.new(shape).uniform_(self.loc.nextafter(-.5, 0), .5) return self.loc - self.scale * u.sign() * torch.log1p(-u.abs())
[docs] def log_prob(self, value): if self._validate_args: self._validate_sample(value) return -torch.log(2 * self.scale) - torch.abs(value - self.loc) / self.scale
[docs] def cdf(self, value): if self._validate_args: self._validate_sample(value) return 0.5 - 0.5 * (value - self.loc).sign() * torch.expm1(-(value - self.loc).abs() / self.scale)
[docs] def icdf(self, value): if self._validate_args: self._validate_sample(value) term = value - 0.5 return self.loc - self.scale * (term).sign() * torch.log1p(-2 * term.abs())
[docs] def entropy(self): return 1 + torch.log(2 * self.scale)