Source code for torch.distributions.gumbel

from numbers import Number
import math
import torch
from torch.distributions import constraints
from torch.distributions.uniform import Uniform
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AffineTransform, ExpTransform
from torch.distributions.utils import _finfo, broadcast_all

euler_constant = 0.57721566490153286060  # Euler Mascheroni Constant


[docs]class Gumbel(TransformedDistribution): r""" Samples from a Gumbel Distribution. Examples:: >>> m = Gumbel(torch.tensor([1.0]), torch.tensor([2.0])) >>> m.sample() # sample from Gumbel distribution with loc=1, scale=2 1.0124 [torch.FloatTensor of size 1] Args: loc (float or Tensor): Location parameter of the distribution scale (float or Tensor): Scale parameter of the distribution """ arg_constraints = {'loc': constraints.real, 'scale': constraints.positive} support = constraints.real def __init__(self, loc, scale, validate_args=None): self.loc, self.scale = broadcast_all(loc, scale) finfo = _finfo(self.loc) if isinstance(loc, Number) and isinstance(scale, Number): batch_shape = torch.Size() base_dist = Uniform(finfo.tiny, 1 - finfo.eps) else: batch_shape = self.scale.size() base_dist = Uniform(self.loc.new(self.loc.size()).fill_(finfo.tiny), 1 - finfo.eps) transforms = [ExpTransform().inv, AffineTransform(loc=0, scale=-torch.ones_like(self.scale)), ExpTransform().inv, AffineTransform(loc=loc, scale=-self.scale)] super(Gumbel, self).__init__(base_dist, transforms, validate_args=validate_args) @property def mean(self): return self.loc + self.scale * euler_constant @property def stddev(self): return (math.pi / math.sqrt(6)) * self.scale @property def variance(self): return self.stddev.pow(2)
[docs] def entropy(self): return self.scale.log() + (1 + euler_constant)